Mostrar el registro sencillo del ítem
dc.contributor.author
Babalhavaeji, A.
dc.contributor.author
Ramadesh, M.
dc.contributor.author
Jalili, M.
dc.contributor.author
González, Sergio Alejandro
dc.date.available
2024-03-14T11:28:57Z
dc.date.issued
2023-09
dc.identifier.citation
Babalhavaeji, A.; Ramadesh, M.; Jalili, M.; González, Sergio Alejandro; A Photovoltaic Generation Forecasting using Convolutional and Recurrent Neural Networks; Elsevier; Energy Reports; 9; 9-2023; 119-123
dc.identifier.issn
2352-4847
dc.identifier.uri
http://hdl.handle.net/11336/230477
dc.description.abstract
Due to climate change consequences, it is very important to replace fossil energy resources with renewable energy resources. Solar energy is one of the main types of renewable energy resources which is harnessed by Photovoltaic (PV) Cells. It is important to accurately forecast how much electricity these energy resources generate to help operate and maintain the electricity grid. But the generation of electricity by PV is often associated with large uncertainty due to varying features like radiation, wind, humidity, and temperature. Deep learning methods have proved useful for this forecasting problem but the spatial information of features for this type of method has not received the due attention for PV generation forecasting. This study aimed to explore how both spatial and temporal information can be considered via a deep learning approach. In this paper, we propose a PV generation forecaster that considers both spatial and temporal information. A convolutional neural network is used as a pre-processing step to capture spatial information. The convolutional neural network is followed by agated recurrent unit neural network to model temporal characteristics. The proposed model enriches the forecastermodel by feeding more meaningful features into the recurrent neural network rather than raw data. The proposed model can predict a horizon for which there is no available information on irradiance, humidity, or wind. We show experimentally that our method is competitive with the state-of-the-art in terms of time and memory requirement while resulting in better prediction performance. The proposed model is applied to real data collected by the research team, and its performance is compared with some state-of-the-art methods. The results show the advantage of the proposed method.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
PV generation forecasting
dc.subject
Convolutional neural networks
dc.subject
Recurrent neural networks
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A Photovoltaic Generation Forecasting using Convolutional and Recurrent Neural Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-03-13T14:21:53Z
dc.journal.volume
9
dc.journal.pagination
119-123
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Babalhavaeji, A.. Royal Melbourne Institute Of Technology.; Australia
dc.description.fil
Fil: Ramadesh, M.. Royal Melbourne Institute Of Technology.; Australia
dc.description.fil
Fil: Jalili, M.. Royal Melbourne Institute Of Technology.; Australia
dc.description.fil
Fil: González, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones Científicas y Tecnológicas en Electrónica; Argentina
dc.journal.title
Energy Reports
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://authors.elsevier.com/sd/article/S2352-4847(23)01394-X
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.egyr.2023.09.149
Archivos asociados