Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Photovoltaic Generation Forecasting using Convolutional and Recurrent Neural Networks

Babalhavaeji, A.; Ramadesh, M.; Jalili, M.; González, Sergio AlejandroIcon
Fecha de publicación: 09/2023
Editorial: Elsevier
Revista: Energy Reports
ISSN: 2352-4847
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Due to climate change consequences, it is very important to replace fossil energy resources with renewable energy resources. Solar energy is one of the main types of renewable energy resources which is harnessed by Photovoltaic (PV) Cells. It is important to accurately forecast how much electricity these energy resources generate to help operate and maintain the electricity grid. But the generation of electricity by PV is often associated with large uncertainty due to varying features like radiation, wind, humidity, and temperature. Deep learning methods have proved useful for this forecasting problem but the spatial information of features for this type of method has not received the due attention for PV generation forecasting. This study aimed to explore how both spatial and temporal information can be considered via a deep learning approach. In this paper, we propose a PV generation forecaster that considers both spatial and temporal information. A convolutional neural network is used as a pre-processing step to capture spatial information. The convolutional neural network is followed by agated recurrent unit neural network to model temporal characteristics. The proposed model enriches the forecastermodel by feeding more meaningful features into the recurrent neural network rather than raw data. The proposed model can predict a horizon for which there is no available information on irradiance, humidity, or wind. We show experimentally that our method is competitive with the state-of-the-art in terms of time and memory requirement while resulting in better prediction performance. The proposed model is applied to real data collected by the research team, and its performance is compared with some state-of-the-art methods. The results show the advantage of the proposed method.
Palabras clave: PV generation forecasting , Convolutional neural networks , Recurrent neural networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.226Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/230477
URL: https://authors.elsevier.com/sd/article/S2352-4847(23)01394-X
DOI: https://doi.org/10.1016/j.egyr.2023.09.149
Colecciones
Articulos(ICYTE)
Articulos de INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Citación
Babalhavaeji, A.; Ramadesh, M.; Jalili, M.; González, Sergio Alejandro; A Photovoltaic Generation Forecasting using Convolutional and Recurrent Neural Networks; Elsevier; Energy Reports; 9; 9-2023; 119-123
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES