Mostrar el registro sencillo del ítem

dc.contributor.author
Llanos, Claudia Elizabeth  
dc.contributor.author
Sanchez, Mabel Cristina  
dc.date.available
2024-03-12T13:42:20Z  
dc.date.issued
2023-08  
dc.identifier.citation
Llanos, Claudia Elizabeth; Sanchez, Mabel Cristina; An efficient methodology to select high-performance M-estimators for robust data reconciliation; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 176; 8-2023; 1-16  
dc.identifier.issn
0098-1354  
dc.identifier.uri
http://hdl.handle.net/11336/230186  
dc.description.abstract
Within the framework ofChemical Engineering, many exponential M-estimators have been proposed andtested. As usual, extensive simulation procedures are run to compare theirperformances. This work presents a deterministic methodology that reduces thecomputational endeavor of the comparative analysis. It becomes an effectivetechnique for proposing and selecting high-performance M-estimators. Thestrategy uses the weight functions’ standardization to provide a common basisfor the posterior application of Equivalent M-estimators and Tails Discrepancydefinitions. In this way, identical M-estimators are figured out and those thatbehave likewise are identified. Whichever robust estimation procedure appliedto estimate process variables and parameters can take advantage of themethodology results. For validation purposes, its conclusions are contrasted tothe traditional performance measures obtained solving robust datareconciliation problems for two chemical processes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Robust Data Reconciliation  
dc.subject
Exponential M-estimator  
dc.subject
Biodiesel Model  
dc.subject.classification
Ingeniería de Procesos Químicos  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An efficient methodology to select high-performance M-estimators for robust data reconciliation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-03-12T11:11:27Z  
dc.journal.volume
176  
dc.journal.pagination
1-16  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Llanos, Claudia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; Argentina  
dc.description.fil
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina  
dc.journal.title
Computers and Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0098135423001679  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2023.108297