Mostrar el registro sencillo del ítem
dc.contributor.author
Cavasotto, Claudio Norberto
dc.contributor.author
Di Filippo, Juan Ignacio
dc.date.available
2024-03-08T15:00:55Z
dc.date.issued
2023-04
dc.identifier.citation
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking; American Chemical Society; Journal of Chemical Information and Modeling; 63; 8; 4-2023; 2267-2280
dc.identifier.issn
1549-9596
dc.identifier.uri
http://hdl.handle.net/11336/229860
dc.description.abstract
Structure-based virtual screening methods are, nowadays, one of the key pillars of computational drug discovery. In recent years, a series of studies have reported docking-based virtual screening campaigns of large databases ranging from hundreds to thousands of millions compounds, further identifying novel hits after experimental validation. As these larg-scale efforts are not generally accessible, machine learning-based protocols have emerged to accelerate the identification of virtual hits within an ultralarge chemical space, reaching impressive reductions in computational time. Herein, we illustrate the motivation and the problem behind the screening of large databases, providing an overview of key concepts and essential applications of machine learning-accelerated protocols, specifically concerning supervised learning methods. We also discuss where the field stands with these novel developments, highlighting possible insights for future studies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Machine learning
dc.subject
Structure based virtual screening
dc.subject
Molecular Docking
dc.subject
Active learning
dc.subject.classification
Medicina Química
dc.subject.classification
Medicina Básica
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-29T12:11:48Z
dc.identifier.eissn
1549-960X
dc.journal.volume
63
dc.journal.number
8
dc.journal.pagination
2267-2280
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Maryland
dc.description.fil
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina
dc.journal.title
Journal of Chemical Information and Modeling
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jcim.2c01471
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jcim.2c01471
Archivos asociados