Mostrar el registro sencillo del ítem

dc.contributor.author
Cavasotto, Claudio Norberto  
dc.contributor.author
Di Filippo, Juan Ignacio  
dc.date.available
2024-03-08T15:00:55Z  
dc.date.issued
2023-04  
dc.identifier.citation
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking; American Chemical Society; Journal of Chemical Information and Modeling; 63; 8; 4-2023; 2267-2280  
dc.identifier.issn
1549-9596  
dc.identifier.uri
http://hdl.handle.net/11336/229860  
dc.description.abstract
Structure-based virtual screening methods are, nowadays, one of the key pillars of computational drug discovery. In recent years, a series of studies have reported docking-based virtual screening campaigns of large databases ranging from hundreds to thousands of millions compounds, further identifying novel hits after experimental validation. As these larg-scale efforts are not generally accessible, machine learning-based protocols have emerged to accelerate the identification of virtual hits within an ultralarge chemical space, reaching impressive reductions in computational time. Herein, we illustrate the motivation and the problem behind the screening of large databases, providing an overview of key concepts and essential applications of machine learning-accelerated protocols, specifically concerning supervised learning methods. We also discuss where the field stands with these novel developments, highlighting possible insights for future studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Machine learning  
dc.subject
Structure based virtual screening  
dc.subject
Molecular Docking  
dc.subject
Active learning  
dc.subject.classification
Medicina Química  
dc.subject.classification
Medicina Básica  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-29T12:11:48Z  
dc.identifier.eissn
1549-960X  
dc.journal.volume
63  
dc.journal.number
8  
dc.journal.pagination
2267-2280  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Maryland  
dc.description.fil
Fil: Cavasotto, Claudio Norberto. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Di Filippo, Juan Ignacio. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. Universidad Austral. Facultad de Ciencias Biomédicas; Argentina. Universidad Austral. Facultad de Ingeniería; Argentina  
dc.journal.title
Journal of Chemical Information and Modeling  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jcim.2c01471  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jcim.2c01471