Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking

Cavasotto, Claudio NorbertoIcon ; Di Filippo, Juan IgnacioIcon
Fecha de publicación: 04/2023
Editorial: American Chemical Society
Revista: Journal of Chemical Information and Modeling
ISSN: 1549-9596
e-ISSN: 1549-960X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Medicina Química

Resumen

Structure-based virtual screening methods are, nowadays, one of the key pillars of computational drug discovery. In recent years, a series of studies have reported docking-based virtual screening campaigns of large databases ranging from hundreds to thousands of millions compounds, further identifying novel hits after experimental validation. As these larg-scale efforts are not generally accessible, machine learning-based protocols have emerged to accelerate the identification of virtual hits within an ultralarge chemical space, reaching impressive reductions in computational time. Herein, we illustrate the motivation and the problem behind the screening of large databases, providing an overview of key concepts and essential applications of machine learning-accelerated protocols, specifically concerning supervised learning methods. We also discuss where the field stands with these novel developments, highlighting possible insights for future studies.
Palabras clave: Machine learning , Structure based virtual screening , Molecular Docking , Active learning
Ver el registro completo
 
Archivos asociados
Tamaño: 3.491Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/229860
URL: https://pubs.acs.org/doi/10.1021/acs.jcim.2c01471
DOI: http://dx.doi.org/10.1021/acs.jcim.2c01471
Colecciones
Articulos(IIMT)
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Citación
Cavasotto, Claudio Norberto; Di Filippo, Juan Ignacio; The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking; American Chemical Society; Journal of Chemical Information and Modeling; 63; 8; 4-2023; 2267-2280
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES