Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

How good are AlphaFold models for docking-based virtual screening?

Scardino, Valeria; Di Filippo, Juan IgnacioIcon ; Cavasotto, Claudio NorbertoIcon
Fecha de publicación: 01/2023
Editorial: Cell Press
Revista: iScience
ISSN: 2589-0042
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

A crucial component in structure-based drug discovery is the availability of high-quality three-dimensional structures of the protein target. Whenever experimental structures were not available, homology modeling has been, so far, the method of choice. Recently, AlphaFold (AF), an artificial-intelligence-based protein structure prediction method, has shown impressive results in terms of model accuracy. This outstanding success prompted us to evaluate how accurate AF models are from the perspective of docking-based drug discovery. We compared the high-throughput docking (HTD) performance of AF models with their corresponding experimental PDB structures using a benchmark set of 22 targets. The AF models showed consistently worse performance using four docking programs and two consensus techniques. Although AlphaFold shows a remarkable ability to predict protein architecture, this might not be enough to guarantee that AF models can be reliably used for HTD, and post-modeling refinement strategies might be key to increase the chances of success.
Palabras clave: ARTIFICIAL INTELLIGENCE , COMPUTATIONAL CHEMISTRY , PROTEIN , PROTEIN FOLDING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.056Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/229198
URL: https://www.sciencedirect.com/science/article/pii/S2589004222021939
DOI: http://dx.doi.org/10.1016/j.isci.2022.105920
Colecciones
Articulos(IIMT)
Articulos de INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL
Citación
Scardino, Valeria; Di Filippo, Juan Ignacio; Cavasotto, Claudio Norberto; How good are AlphaFold models for docking-based virtual screening?; Cell Press; iScience; 26; 1; 1-2023; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES