Mostrar el registro sencillo del ítem
dc.contributor.author
Fraiman, Jacob Ricardo

dc.contributor.author
Svarc, Marcela

dc.date.available
2017-08-23T19:31:58Z
dc.date.issued
2012-09
dc.identifier.citation
Fraiman, Jacob Ricardo; Svarc, Marcela; Resistant estimates for high dimensional and functional data based on random projections; Elsevier; Computational Statistics and Data Analysis; 58; 9-2012; 326-338
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/22882
dc.description.abstract
We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Robust Estimates
dc.subject
High Dimensional Data
dc.subject
Trimming Procedures
dc.subject
Trimming Estimates
dc.subject
Location And Scatter Estimates
dc.subject.classification
Otras Matemáticas

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Resistant estimates for high dimensional and functional data based on random projections
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-22T21:22:44Z
dc.journal.volume
58
dc.journal.pagination
326-338
dc.journal.pais
Países Bajos

dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Fraiman, Jacob Ricardo. Universidad de San Andrés; Argentina. Universidad de la República; Uruguay. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Svarc, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés; Argentina
dc.journal.title
Computational Statistics and Data Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2012.09.006
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167947312003350
Archivos asociados