Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Resistant estimates for high dimensional and functional data based on random projections

Fraiman, Jacob Ricardo; Svarc, MarcelaIcon
Fecha de publicación: 09/2012
Editorial: Elsevier
Revista: Computational Statistics and Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Matemáticas

Resumen

We herein propose a new robust estimation method based on random projections that is adaptive and automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.
Palabras clave: Robust Estimates , High Dimensional Data , Trimming Procedures , Trimming Estimates , Location And Scatter Estimates
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 664.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/22882
DOI: http://dx.doi.org/10.1016/j.csda.2012.09.006
URL: http://www.sciencedirect.com/science/article/pii/S0167947312003350
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Fraiman, Jacob Ricardo; Svarc, Marcela; Resistant estimates for high dimensional and functional data based on random projections; Elsevier; Computational Statistics and Data Analysis; 58; 9-2012; 326-338
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES