Mostrar el registro sencillo del ítem
dc.contributor.author
Riquelme, Gabriel
dc.contributor.author
Bortolotto, Emmanuel Ezequiel
dc.contributor.author
Dombald, Matías
dc.contributor.author
Monge, Maria Eugenia
dc.date.available
2024-02-28T15:10:35Z
dc.date.issued
2023-03
dc.identifier.citation
Riquelme, Gabriel; Bortolotto, Emmanuel Ezequiel; Dombald, Matías; Monge, Maria Eugenia; Model-driven data curation pipeline for LC–MS-based untargeted metabolomics; Springer; Metabolomics; 19; 3; 3-2023; 1-11
dc.identifier.issn
1573-3882
dc.identifier.uri
http://hdl.handle.net/11336/228825
dc.description.abstract
Introduction: There is still no community consensus regarding strategies for data quality review in liquid chromatography mass spectrometry (LC–MS)-based untargeted metabolomics. Assessing the analytical robustness of data, which is relevant for inter-laboratory comparisons and reproducibility, remains a challenge despite the wide variety of tools available for data processing. Objectives: The aim of this study was to provide a model to describe the sources of variation in LC–MS-based untargeted metabolomics measurements, to use it to build a comprehensive curation pipeline, and to provide quality assessment tools for data quality review. Methods: Human serum samples (n=392) were analyzed by ultraperformance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) using an untargeted metabolomics approach. The pipeline and tools used to process this dataset were implemented as part of the open source, publicly available TidyMS Python-based package. Results: The model was applied to understand data curation practices used by the metabolomics community. Sources of variation, which are often overlooked in untargeted metabolomic studies, were identified in the analysis. New tools were used to characterize certain types of variations. Conclusion: The developed pipeline allowed confirming data robustness by comparing the experimental results with expected values predicted by the model. New quality control practices were introduced to assess the analytical quality of data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
DATA CURATION
dc.subject
LIQUID CHROMATOGRAPHY
dc.subject
MASS SPECTROMETRY
dc.subject
QUALITY CONTROL PRACTICES
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Model-driven data curation pipeline for LC–MS-based untargeted metabolomics
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-28T09:49:08Z
dc.identifier.eissn
1573-3890
dc.journal.volume
19
dc.journal.number
3
dc.journal.pagination
1-11
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Riquelme, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
dc.description.fil
Fil: Bortolotto, Emmanuel Ezequiel. Hospital Italiano; Argentina
dc.description.fil
Fil: Dombald, Matías. Hospital Italiano; Argentina
dc.description.fil
Fil: Monge, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina
dc.journal.title
Metabolomics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11306-023-01976-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11306-023-01976-1
Archivos asociados