Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Model-driven data curation pipeline for LC–MS-based untargeted metabolomics

Riquelme, GabrielIcon ; Bortolotto, Emmanuel Ezequiel; Dombald, Matías; Monge, Maria EugeniaIcon
Fecha de publicación: 03/2023
Editorial: Springer
Revista: Metabolomics
ISSN: 1573-3882
e-ISSN: 1573-3890
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Introduction: There is still no community consensus regarding strategies for data quality review in liquid chromatography mass spectrometry (LC–MS)-based untargeted metabolomics. Assessing the analytical robustness of data, which is relevant for inter-laboratory comparisons and reproducibility, remains a challenge despite the wide variety of tools available for data processing. Objectives: The aim of this study was to provide a model to describe the sources of variation in LC–MS-based untargeted metabolomics measurements, to use it to build a comprehensive curation pipeline, and to provide quality assessment tools for data quality review. Methods: Human serum samples (n=392) were analyzed by ultraperformance liquid chromatography coupled to high-resolution mass spectrometry (UPLC-HRMS) using an untargeted metabolomics approach. The pipeline and tools used to process this dataset were implemented as part of the open source, publicly available TidyMS Python-based package. Results: The model was applied to understand data curation practices used by the metabolomics community. Sources of variation, which are often overlooked in untargeted metabolomic studies, were identified in the analysis. New tools were used to characterize certain types of variations. Conclusion: The developed pipeline allowed confirming data robustness by comparing the experimental results with expected values predicted by the model. New quality control practices were introduced to assess the analytical quality of data.
Palabras clave: DATA CURATION , LIQUID CHROMATOGRAPHY , MASS SPECTROMETRY , QUALITY CONTROL PRACTICES
Ver el registro completo
 
Archivos asociados
Tamaño: 5.354Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/228825
URL: https://link.springer.com/10.1007/s11306-023-01976-1
DOI: http://dx.doi.org/10.1007/s11306-023-01976-1
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Riquelme, Gabriel; Bortolotto, Emmanuel Ezequiel; Dombald, Matías; Monge, Maria Eugenia; Model-driven data curation pipeline for LC–MS-based untargeted metabolomics; Springer; Metabolomics; 19; 3; 3-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES