Mostrar el registro sencillo del ítem

dc.contributor.author
de Albuquerque, J. C.  
dc.contributor.author
de Assis, L. R .S.  
dc.contributor.author
Carvalho, M. L. M.  
dc.contributor.author
Salort, Ariel Martin  
dc.date.available
2024-02-23T14:49:50Z  
dc.date.issued
2023-04  
dc.identifier.citation
de Albuquerque, J. C.; de Assis, L. R .S.; Carvalho, M. L. M.; Salort, Ariel Martin; On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems; Springer; The Journal Of Geometric Analysis; 33; 4; 4-2023; 1-37  
dc.identifier.issn
1050-6926  
dc.identifier.uri
http://hdl.handle.net/11336/228184  
dc.description.abstract
In this work, we establish some abstract results on the perspective of the fractional Musielak–Sobolev spaces, such as: uniform convexity, Radon–Riesz property with respect to the modular function, (S+) -property, Brezis–Lieb type Lemma to the modular function and monotonicity results. Moreover, we apply the theory developed to study the existence of solutions to the following class of nonlocal problems {(-Δ)Φx,ysu=f(x,u),inΩ,u=0,onRNΩ,where N≥ 2 , Ω⊂ RN is a bounded domain with Lipschitz boundary ∂Ω and f: Ω× R→ R is a Carathéodory function not necessarily satisfying the Ambrosetti–Rabinowitz condition. Such class of problems enables the presence of many particular operators, for instance, the fractional operator with variable exponent, double-phase and double-phase with variable exponent operators, anisotropic fractional p-Laplacian, among others.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FRACTIONAL MUSIELAK–SOBOLEV SPACES  
dc.subject
MONOTONICITY RESULTS  
dc.subject
NONLOCAL PROBLEMS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-22T10:48:02Z  
dc.journal.volume
33  
dc.journal.number
4  
dc.journal.pagination
1-37  
dc.journal.pais
Alemania  
dc.description.fil
Fil: de Albuquerque, J. C.. Universidade Federal de Pernambuco; Brasil  
dc.description.fil
Fil: de Assis, L. R .S.. Universidade Federal de Pernambuco; Brasil  
dc.description.fil
Fil: Carvalho, M. L. M.. Universidade Federal de Goiás; Brasil  
dc.description.fil
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
The Journal Of Geometric Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12220-023-01211-2