Artículo
On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems
Fecha de publicación:
04/2023
Editorial:
Springer
Revista:
The Journal Of Geometric Analysis
ISSN:
1050-6926
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we establish some abstract results on the perspective of the fractional Musielak–Sobolev spaces, such as: uniform convexity, Radon–Riesz property with respect to the modular function, (S+) -property, Brezis–Lieb type Lemma to the modular function and monotonicity results. Moreover, we apply the theory developed to study the existence of solutions to the following class of nonlocal problems {(-Δ)Φx,ysu=f(x,u),inΩ,u=0,onRNΩ,where N≥ 2 , Ω⊂ RN is a bounded domain with Lipschitz boundary ∂Ω and f: Ω× R→ R is a Carathéodory function not necessarily satisfying the Ambrosetti–Rabinowitz condition. Such class of problems enables the presence of many particular operators, for instance, the fractional operator with variable exponent, double-phase and double-phase with variable exponent operators, anisotropic fractional p-Laplacian, among others.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
de Albuquerque, J. C.; de Assis, L. R .S.; Carvalho, M. L. M.; Salort, Ariel Martin; On Fractional Musielak–Sobolev Spaces and Applications to Nonlocal Problems; Springer; The Journal Of Geometric Analysis; 33; 4; 4-2023; 1-37
Compartir
Altmétricas