Mostrar el registro sencillo del ítem

dc.contributor.author
van Ryzin, Garrett  
dc.contributor.author
Vulcano, Gustavo  
dc.date.available
2017-08-22T14:34:21Z  
dc.date.issued
2017-02  
dc.identifier.citation
van Ryzin, Garrett; Vulcano, Gustavo; Technical note—An expectation-maximization method to estimate a rank-based choice model of demand; Informs; Operations Research; 65; 2; 2-2017; 396-407  
dc.identifier.issn
0030-364X  
dc.identifier.uri
http://hdl.handle.net/11336/22753  
dc.description.abstract
We propose an expectation-maximization (EM) method to estimate customer preferences for a category of products using only sales transaction and product availability data. The demand model combines a general, rank-based discrete choice model of preferences with a Bernoulli process of customer arrivals over time. The discrete choice model is defined by a probability mass function (pmf) on a given set of preference rankings of alternatives, including the no-purchase alternative. Each customer is represented by a preference list, and when faced with a given choice set is assumed to either purchase the available option that ranks highest in her preference list, or not purchase at all if no available product ranks higher than the no-purchase alternative.We apply the EM method to jointly estimate the arrival rate of customers and the pmf of the rank-based choice model, and show that it leads to a remarkably simple and highly efficient estimation procedure. All limit points of the procedure are provably stationary points of the associated incomplete data log-likelihood function, and the output produced are maximum likelihood estimates (MLEs). Our numerical experiments confirm the practical potential of the proposal.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Informs  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Demand Estimation  
dc.subject
Demand Untruncation  
dc.subject
Choice Behavior  
dc.subject
Em Method  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Technical note—An expectation-maximization method to estimate a rank-based choice model of demand  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-06-21T16:50:13Z  
dc.identifier.eissn
1526-5463  
dc.journal.volume
65  
dc.journal.number
2  
dc.journal.pagination
396-407  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Catonsville  
dc.description.fil
Fil: van Ryzin, Garrett. Columbia University; Estados Unidos  
dc.description.fil
Fil: Vulcano, Gustavo. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina. University of New York; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Operations Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubsonline.informs.org/doi/10.1287/opre.2016.1559  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1287/opre.2016.1559