Mostrar el registro sencillo del ítem
dc.contributor.author
van Ryzin, Garrett
dc.contributor.author
Vulcano, Gustavo
dc.date.available
2017-08-22T14:34:21Z
dc.date.issued
2017-02
dc.identifier.citation
van Ryzin, Garrett; Vulcano, Gustavo; Technical note—An expectation-maximization method to estimate a rank-based choice model of demand; Informs; Operations Research; 65; 2; 2-2017; 396-407
dc.identifier.issn
0030-364X
dc.identifier.uri
http://hdl.handle.net/11336/22753
dc.description.abstract
We propose an expectation-maximization (EM) method to estimate customer preferences for a category of products using only sales transaction and product availability data. The demand model combines a general, rank-based discrete choice model of preferences with a Bernoulli process of customer arrivals over time. The discrete choice model is defined by a probability mass function (pmf) on a given set of preference rankings of alternatives, including the no-purchase alternative. Each customer is represented by a preference list, and when faced with a given choice set is assumed to either purchase the available option that ranks highest in her preference list, or not purchase at all if no available product ranks higher than the no-purchase alternative.We apply the EM method to jointly estimate the arrival rate of customers and the pmf of the rank-based choice model, and show that it leads to a remarkably simple and highly efficient estimation procedure. All limit points of the procedure are provably stationary points of the associated incomplete data log-likelihood function, and the output produced are maximum likelihood estimates (MLEs). Our numerical experiments confirm the practical potential of the proposal.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Informs
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Demand Estimation
dc.subject
Demand Untruncation
dc.subject
Choice Behavior
dc.subject
Em Method
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Technical note—An expectation-maximization method to estimate a rank-based choice model of demand
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-06-21T16:50:13Z
dc.identifier.eissn
1526-5463
dc.journal.volume
65
dc.journal.number
2
dc.journal.pagination
396-407
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Catonsville
dc.description.fil
Fil: van Ryzin, Garrett. Columbia University; Estados Unidos
dc.description.fil
Fil: Vulcano, Gustavo. Universidad Torcuato Di Tella. Escuela de Negocios; Argentina. University of New York; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Operations Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubsonline.informs.org/doi/10.1287/opre.2016.1559
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1287/opre.2016.1559
Archivos asociados