Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Technical note—An expectation-maximization method to estimate a rank-based choice model of demand

van Ryzin, Garrett; Vulcano, GustavoIcon
Fecha de publicación: 02/2017
Editorial: Informs
Revista: Operations Research
ISSN: 0030-364X
e-ISSN: 1526-5463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada; Estadística y Probabilidad; Ciencias de la Computación

Resumen

We propose an expectation-maximization (EM) method to estimate customer preferences for a category of products using only sales transaction and product availability data. The demand model combines a general, rank-based discrete choice model of preferences with a Bernoulli process of customer arrivals over time. The discrete choice model is defined by a probability mass function (pmf) on a given set of preference rankings of alternatives, including the no-purchase alternative. Each customer is represented by a preference list, and when faced with a given choice set is assumed to either purchase the available option that ranks highest in her preference list, or not purchase at all if no available product ranks higher than the no-purchase alternative.We apply the EM method to jointly estimate the arrival rate of customers and the pmf of the rank-based choice model, and show that it leads to a remarkably simple and highly efficient estimation procedure. All limit points of the procedure are provably stationary points of the associated incomplete data log-likelihood function, and the output produced are maximum likelihood estimates (MLEs). Our numerical experiments confirm the practical potential of the proposal.
Palabras clave: Demand Estimation , Demand Untruncation , Choice Behavior , Em Method
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 357.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/22753
URL: http://pubsonline.informs.org/doi/10.1287/opre.2016.1559
DOI: http://dx.doi.org/10.1287/opre.2016.1559
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
van Ryzin, Garrett; Vulcano, Gustavo; Technical note—An expectation-maximization method to estimate a rank-based choice model of demand; Informs; Operations Research; 65; 2; 2-2017; 396-407
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES