Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Day-Ahead Operational Planning for DisCos Based on Demand Response Flexibility and Volt/Var Control

Jurado Egas, Mauro FabricioIcon ; Salazar, Eduardo; Samper, Mauricio EduardoIcon ; Rosés, Rodolfo Edgar; Ojeda Esteybar, Diego MauricioIcon
Fecha de publicación: 10/2023
Editorial: MDPI
Revista: Energies
ISSN: 1996-1073
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Considering the integration of distributed energy resources (DER) such as distributed generation, demand response, and electric vehicles, day-ahead scheduling plays a significant role in the operation of active distribution systems. Therefore, this article proposes a comprehensive methodology for the short-term operational planning of a distribution company (DisCo), aiming to minimize the total daily operational cost. The proposed methodology integrates on-load tap changers, capacitor banks, and flexible loads participating in demand response (DR) to reduce losses and manage congestion and voltage violations, while considering the costs associated with the operation and use of controllable resources. Furthermore, to forecast PV output and load demand behind the meter at the MV/LV distribution transformer level, a short-term net load forecasting model using deep learning techniques has been incorporated. The proposed scheme is solved through an efficient two-stage strategy based on genetic algorithms and dynamic programming. Numerical results based on the modified IEEE 13-node distribution system and a typical 37-node Latin American system validate the effectiveness of the proposed methodology. The obtained results verify that, through the proposed methodology, the DisCo can effectively schedule its installations and DR to minimize the total operational cost while reducing losses and robustly managing voltage and congestion issues.
Palabras clave: ACTIVE DISTRIBUTION SYSTEMS , BEHIND-THE-METER , DEEP LEARNING , DEMAND RESPONSE , DYNAMIC PROGRAMMING , FORECASTING , GENETIC ALGORITHM , VOLT/VAR CONTROL
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.969Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227407
URL: https://www.mdpi.com/1996-1073/16/20/7045
DOI: http://dx.doi.org/10.3390/en16207045
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Jurado Egas, Mauro Fabricio; Salazar, Eduardo; Samper, Mauricio Eduardo; Rosés, Rodolfo Edgar; Ojeda Esteybar, Diego Mauricio; Day-Ahead Operational Planning for DisCos Based on Demand Response Flexibility and Volt/Var Control; MDPI; Energies; 16; 20; 10-2023; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES