Mostrar el registro sencillo del ítem
dc.contributor.author
Salazar, Eduardo Javier
dc.contributor.author
Jurado Egas, Mauro Fabricio
dc.contributor.author
Samper, Mauricio Eduardo
dc.date.available
2024-02-19T11:21:31Z
dc.date.issued
2023-02
dc.identifier.citation
Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids; MDPI; Energies; 16; 3; 2-2023; 1-33
dc.identifier.issn
1996-1073
dc.identifier.uri
http://hdl.handle.net/11336/227342
dc.description.abstract
International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DEMAND COINCIDENCE FACTOR
dc.subject
INCENTIVE-BASED DEMAND RESPONSE
dc.subject
PRICE-BASED DEMAND RESPONSE
dc.subject
REINFORCEMENT Q-LEARNING
dc.subject
REPLAY MEMORY EXCHANGE
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-19T10:51:42Z
dc.journal.volume
16
dc.journal.number
3
dc.journal.pagination
1-33
dc.journal.pais
Suiza
dc.description.fil
Fil: Salazar, Eduardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Jurado Egas, Mauro Fabricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.description.fil
Fil: Samper, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Energía Eléctrica. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Energía Eléctrica; Argentina
dc.journal.title
Energies
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/16/3/1466
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/en16031466
Archivos asociados