Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids

Salazar, Eduardo Javier; Jurado Egas, Mauro FabricioIcon ; Samper, Mauricio EduardoIcon
Fecha de publicación: 02/2023
Editorial: MDPI
Revista: Energies
ISSN: 1996-1073
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

International agreements support the modernization of electricity networks and renewable energy resources (RES). However, these RES affect market prices due to resource variability (e.g., solar). Among the alternatives, Demand Response (DR) is presented as a tool to improve the balance between electricity supply and demand by adapting consumption to available production. In this sense, this work focuses on developing a DR model that combines price and incentive-based demand response models (P-B and I-B) to efficiently manage consumer demand with data from a real San Juan—Argentina distribution network. In addition, a price scheme is proposed in real time and by the time of use in relation to the consumers’ influence in the peak demand of the system. The proposed schemes increase load factor and improve demand displacement compared to a demand response reference model. In addition, the proposed reinforcement learning model improves short-term and long-term price search. Finally, a description and formulation of the market where the work was implemented is presented.
Palabras clave: DEMAND COINCIDENCE FACTOR , INCENTIVE-BASED DEMAND RESPONSE , PRICE-BASED DEMAND RESPONSE , REINFORCEMENT Q-LEARNING , REPLAY MEMORY EXCHANGE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.526Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227342
URL: https://www.mdpi.com/1996-1073/16/3/1466
DOI: https://doi.org/10.3390/en16031466
Colecciones
Articulos(IEE)
Articulos de INSTITUTO DE ENERGIA ELECTRICA
Citación
Salazar, Eduardo Javier; Jurado Egas, Mauro Fabricio; Samper, Mauricio Eduardo; Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids; MDPI; Energies; 16; 3; 2-2023; 1-33
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES