Mostrar el registro sencillo del ítem
dc.contributor.author
Corti, Maria Agustina
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Pasquale, Miguel Angel
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.contributor.author
Garcia Einschlag, Fernando Sebastian
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.date.available
2024-02-19T10:08:13Z
dc.date.issued
2023-01
dc.identifier.citation
Corti, Maria Agustina; Pasquale, Miguel Angel; Garcia Einschlag, Fernando Sebastian; Screening of neoplastic diseases by statistical analysis of urine fluorescence spectroscopic data: Application of multivariate techniques for enhancing classification; Elsevier Science SA; Journal of Photochemistry and Photobiology B: Biology; 238; 1-2023; 1-13
dc.identifier.issn
1011-1344
dc.identifier.uri
http://hdl.handle.net/11336/227314
dc.description.abstract
The composition of human fluids is modified during the course of neoplastic diseases. Urine analysis offers the advantage of being a noninvasive method for which samples are easily and routinely collected from patients. In this work, urine fluorescence spectra recorded upon excitation at 405 nm were obtained from healthy volunteers and individuals with different oncologic pathologies. A large number of indexes, i.e., parameters obtained from spectral data which assist spectral features characterization, were developed to classify healthy and pathological populations. The discrimination ability of simple predictive indexes, obtained from spectra pretreated with different normalization procedures and by taking their derivatives, was statistically assessed. In addition, multivariate methods, such as principal component analysis and multivariate curve resolution by alternating least squares, were used to develop more elaborate indexes for distinguishing between healthy and pathological populations. All indexes were systematically evaluated on a statistical basis by in lab-developed routines capable of detecting outliers, judging the normal distribution of the indexes, evaluating variance homogeneity, testing the difference between the means of healthy and pathological populations, as well as performing a receiver operator curve analysis to assess the classification power of each index. Those indexes with the best performances were further combined to perform a linear discriminant analysis, which yielded a powerful classification algorithm with an area under the receiver operator curve of 0.986, a sensitivity of 97.7%, a specificity of 100%, and an overall accuracy of 98.8%. The present study shows that the statistical analysis of urine fluorescence data with a proper combination of multivariate techniques bears a high potential to develop massive screening tests for the early detection of oncologic pathologies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science SA
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FLUORESCENCE
dc.subject
MULTIVARIATE METHODS
dc.subject
ONCOLOGY
dc.subject
STATISTICS
dc.subject
URINE
dc.subject.classification
Química Analítica
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
Ciencias Químicas
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.title
Screening of neoplastic diseases by statistical analysis of urine fluorescence spectroscopic data: Application of multivariate techniques for enhancing classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-14T12:48:26Z
dc.journal.volume
238
dc.journal.pagination
1-13
dc.journal.pais
Países Bajos
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Corti, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Pasquale, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Garcia Einschlag, Fernando Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Journal of Photochemistry and Photobiology B: Biology
![Se ha confirmado la validez de este valor de autoridad por un usuario](/themes/CONICETDigital/images/authority_control/invisible.gif)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jphotobiol.2022.112598
Archivos asociados