Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Screening of neoplastic diseases by statistical analysis of urine fluorescence spectroscopic data: Application of multivariate techniques for enhancing classification

Corti, Maria AgustinaIcon ; Pasquale, Miguel AngelIcon ; Garcia Einschlag, Fernando SebastianIcon
Fecha de publicación: 01/2023
Editorial: Elsevier Science SA
Revista: Journal of Photochemistry and Photobiology B: Biology
ISSN: 1011-1344
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

The composition of human fluids is modified during the course of neoplastic diseases. Urine analysis offers the advantage of being a noninvasive method for which samples are easily and routinely collected from patients. In this work, urine fluorescence spectra recorded upon excitation at 405 nm were obtained from healthy volunteers and individuals with different oncologic pathologies. A large number of indexes, i.e., parameters obtained from spectral data which assist spectral features characterization, were developed to classify healthy and pathological populations. The discrimination ability of simple predictive indexes, obtained from spectra pretreated with different normalization procedures and by taking their derivatives, was statistically assessed. In addition, multivariate methods, such as principal component analysis and multivariate curve resolution by alternating least squares, were used to develop more elaborate indexes for distinguishing between healthy and pathological populations. All indexes were systematically evaluated on a statistical basis by in lab-developed routines capable of detecting outliers, judging the normal distribution of the indexes, evaluating variance homogeneity, testing the difference between the means of healthy and pathological populations, as well as performing a receiver operator curve analysis to assess the classification power of each index. Those indexes with the best performances were further combined to perform a linear discriminant analysis, which yielded a powerful classification algorithm with an area under the receiver operator curve of 0.986, a sensitivity of 97.7%, a specificity of 100%, and an overall accuracy of 98.8%. The present study shows that the statistical analysis of urine fluorescence data with a proper combination of multivariate techniques bears a high potential to develop massive screening tests for the early detection of oncologic pathologies.
Palabras clave: FLUORESCENCE , MULTIVARIATE METHODS , ONCOLOGY , STATISTICS , URINE
Ver el registro completo
 
Archivos asociados
Tamaño: 5.400Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/227314
DOI: https://doi.org/10.1016/j.jphotobiol.2022.112598
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Corti, Maria Agustina; Pasquale, Miguel Angel; Garcia Einschlag, Fernando Sebastian; Screening of neoplastic diseases by statistical analysis of urine fluorescence spectroscopic data: Application of multivariate techniques for enhancing classification; Elsevier Science SA; Journal of Photochemistry and Photobiology B: Biology; 238; 1-2023; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES