Artículo
The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems
Fecha de publicación:
12/2023
Editorial:
Sociedade Brasileira de Física
Revista:
Brazilian Journal Of Physics
ISSN:
0103-9733
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The decomplexification procedure allows one to show mathematically (stricto sensu) the equivalence (isomorphism) between the quantum dynamics of a system with a finite number of basis states and a classical dynamics system. This unique way of connecting different dynamics was used in the past to analyze the relationship between the well-known geometric phase present in the quantum evolution discovered by Berry and its generalizations, with their analogs, the Hannay phases, in the classical domain. In here, this analysis is carried out for several quantum hermitian and non-hermitian PT-symmetric Hamiltonians and compared with the Hannay phase analysis in their classical isomorphic equivalent systems. As the equivalence ends in the classical domain with oscillator dynamics, we exploit the analogy to propose resonant electric circuits coupled with a gyrator, to reproduce the geometric phase coming from the theoretical solutions, in simulated laboratory experiments.
Palabras clave:
DECOMPLEXIFICATION
,
GEOMETRICAL PHASES
,
GYRATOR
,
RESONAT CIRCUIT
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(LEICI)
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Articulos de INSTITUTO DE INVESTIGACIONES EN ELECTRONICA, CONTROL Y PROCESAMIENTO DE SEÑALES
Citación
Fanchiotti, Huner; García Canal, C. A.; Mayosky, Miguel Angel; Veiga, Alejandro Luis; Vento, V.; The Geometric Phase in Classical Systems and in the Equivalent Quantum Hermitian and Non-Hermitian PT-Symmetric Systems; Sociedade Brasileira de Física; Brazilian Journal Of Physics; 53; 6; 12-2023; 1-11
Compartir
Altmétricas