Mostrar el registro sencillo del ítem

dc.contributor.author
Maya, Juan Augusto  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.author
Tonello, Andrea  
dc.date.available
2024-02-09T15:43:49Z  
dc.date.issued
2023  
dc.identifier.citation
A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection; IEEE International Mediterranean Conference on Communications and Networking; Dubrovnik; Croacia; 2023; 1-6  
dc.identifier.uri
http://hdl.handle.net/11336/226672  
dc.description.abstract
We consider the problem of distributed detection of a radio source emitting a signal. Geographically distributed sensor nodes obtain energy measurements, compute a local statistic, and transmit them to a fusion center, where a decision regarding to state of the source (on or off) is made. We model the radio source as a stochastic signal and deal with spatially statistically dependent measurements, whose probability density function (PDF) has unknown positive parameters when the radio source is active. Under the framework of the Generalized Likelihood Ratio Test (GLRT) theory, the positive constraint on the unknown multidimensional parameters makes the computation of the GLRT asymptotic performance (when the amount of sensor measurements tends to infinity) more involved. Nevertheless, we analytically characterize its asymptotic performance. Moreover, as the GLRT is not amenable for distributed settings because of the spatial statistically dependence of the measurements, we study a GLRT-like test where the joint PDF of the measurements is substituted by the product of its marginal PDFs, and therefore, the statistical dependence is completely discarded for building this test. Its asymptotic performance is proved to be identical to the original GLRT, showing that the statistically dependence of the measurements has no impact on the detection performance in the asymptotic scenario. Furthermore, the GLRT-like algorithm has a low computational complexity and demands low communication resources, as compared to the GLRT, which make it suitable for Wireless Sensor Networks with scarce computation and communication resources.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Wireless sensor networks  
dc.subject
Distributed databases  
dc.subject
Stochastic processes  
dc.subject
Computational modeling  
dc.subject
Density measurement  
dc.subject
Internet of things  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2024-02-09T14:42:06Z  
dc.journal.pagination
1-6  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Atlanta  
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Tonello, Andrea. University of Klagenfurt; Austria  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10266628  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/MeditCom58224.2023.10266628  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
IEEE International Mediterranean Conference on Communications and Networking  
dc.date.evento
2023-09-04  
dc.description.ciudadEvento
Dubrovnik  
dc.description.paisEvento
Croacia  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
IEEE International Mediterranean Conference on Communications and Networking  
dc.date.eventoHasta
2023-09-07  
dc.type
Conferencia