Mostrar el registro sencillo del ítem
dc.contributor.author
Maya, Juan Augusto
dc.contributor.author
Rey Vega, Leonardo Javier
dc.contributor.author
Tonello, Andrea
dc.date.available
2024-02-09T15:43:49Z
dc.date.issued
2023
dc.identifier.citation
A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection; IEEE International Mediterranean Conference on Communications and Networking; Dubrovnik; Croacia; 2023; 1-6
dc.identifier.uri
http://hdl.handle.net/11336/226672
dc.description.abstract
We consider the problem of distributed detection of a radio source emitting a signal. Geographically distributed sensor nodes obtain energy measurements, compute a local statistic, and transmit them to a fusion center, where a decision regarding to state of the source (on or off) is made. We model the radio source as a stochastic signal and deal with spatially statistically dependent measurements, whose probability density function (PDF) has unknown positive parameters when the radio source is active. Under the framework of the Generalized Likelihood Ratio Test (GLRT) theory, the positive constraint on the unknown multidimensional parameters makes the computation of the GLRT asymptotic performance (when the amount of sensor measurements tends to infinity) more involved. Nevertheless, we analytically characterize its asymptotic performance. Moreover, as the GLRT is not amenable for distributed settings because of the spatial statistically dependence of the measurements, we study a GLRT-like test where the joint PDF of the measurements is substituted by the product of its marginal PDFs, and therefore, the statistical dependence is completely discarded for building this test. Its asymptotic performance is proved to be identical to the original GLRT, showing that the statistically dependence of the measurements has no impact on the detection performance in the asymptotic scenario. Furthermore, the GLRT-like algorithm has a low computational complexity and demands low communication resources, as compared to the GLRT, which make it suitable for Wireless Sensor Networks with scarce computation and communication resources.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Wireless sensor networks
dc.subject
Distributed databases
dc.subject
Stochastic processes
dc.subject
Computational modeling
dc.subject
Density measurement
dc.subject
Internet of things
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2024-02-09T14:42:06Z
dc.journal.pagination
1-6
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Atlanta
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Tonello, Andrea. University of Klagenfurt; Austria
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10266628
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/MeditCom58224.2023.10266628
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
IEEE International Mediterranean Conference on Communications and Networking
dc.date.evento
2023-09-04
dc.description.ciudadEvento
Dubrovnik
dc.description.paisEvento
Croacia
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
IEEE International Mediterranean Conference on Communications and Networking
dc.date.eventoHasta
2023-09-07
dc.type
Conferencia
Archivos asociados