Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection

Maya, Juan AugustoIcon ; Rey Vega, Leonardo JavierIcon ; Tonello, Andrea
Tipo del evento: Conferencia
Nombre del evento: IEEE International Mediterranean Conference on Communications and Networking
Fecha del evento: 04/09/2023
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: IEEE International Mediterranean Conference on Communications and Networking
Editorial: Institute of Electrical and Electronics Engineers
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

We consider the problem of distributed detection of a radio source emitting a signal. Geographically distributed sensor nodes obtain energy measurements, compute a local statistic, and transmit them to a fusion center, where a decision regarding to state of the source (on or off) is made. We model the radio source as a stochastic signal and deal with spatially statistically dependent measurements, whose probability density function (PDF) has unknown positive parameters when the radio source is active. Under the framework of the Generalized Likelihood Ratio Test (GLRT) theory, the positive constraint on the unknown multidimensional parameters makes the computation of the GLRT asymptotic performance (when the amount of sensor measurements tends to infinity) more involved. Nevertheless, we analytically characterize its asymptotic performance. Moreover, as the GLRT is not amenable for distributed settings because of the spatial statistically dependence of the measurements, we study a GLRT-like test where the joint PDF of the measurements is substituted by the product of its marginal PDFs, and therefore, the statistical dependence is completely discarded for building this test. Its asymptotic performance is proved to be identical to the original GLRT, showing that the statistically dependence of the measurements has no impact on the detection performance in the asymptotic scenario. Furthermore, the GLRT-like algorithm has a low computational complexity and demands low communication resources, as compared to the GLRT, which make it suitable for Wireless Sensor Networks with scarce computation and communication resources.
Palabras clave: Wireless sensor networks , Distributed databases , Stochastic processes , Computational modeling , Density measurement , Internet of things
Ver el registro completo
 
Archivos asociados
Tamaño: 480.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226672
URL: https://ieeexplore.ieee.org/document/10266628
DOI: http://dx.doi.org/10.1109/MeditCom58224.2023.10266628
Colecciones
Eventos(CSC)
Eventos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
A Resource-Efficient Asymptotically Equivalent GLRT Test for Radio Source Distributed Detection; IEEE International Mediterranean Conference on Communications and Networking; Dubrovnik; Croacia; 2023; 1-6
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES