Mostrar el registro sencillo del ítem
dc.contributor.author
Matar, Mustafa
dc.contributor.author
Gill Estevez, Pablo Daniel
dc.contributor.author
Marchi, Pablo Gabriel
dc.contributor.author
Messina, Francisco Javier
dc.contributor.author
Elmoudi, Ramadan
dc.contributor.author
Wshah, Safwan
dc.date.available
2024-02-09T15:40:05Z
dc.date.issued
2023-03
dc.identifier.citation
Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-11
dc.identifier.issn
0142-0615
dc.identifier.uri
http://hdl.handle.net/11336/226670
dc.description.abstract
Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
DEEP LEARNING
dc.subject
DISSIPATING ENERGY
dc.subject
FORCED OSCILLATIONS
dc.subject
PHASOR MEASUREMENT UNIT (PMU)
dc.subject
TRANSFORMER-BASED DEEP LEARNING
dc.subject.classification
Ingeniería Eléctrica y Electrónica
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Transformer-based deep learning model for forced oscillation localization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-02-09T14:39:45Z
dc.journal.volume
146
dc.journal.pagination
1-11
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Matar, Mustafa. University Of Vermont.; Estados Unidos
dc.description.fil
Fil: Gill Estevez, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Marchi, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Ctro de Simulación Computacional P/aplicaciones Tecnologicas; Argentina
dc.description.fil
Fil: Elmoudi, Ramadan. No especifíca;
dc.description.fil
Fil: Wshah, Safwan. University Of Vermont.; Estados Unidos
dc.journal.title
International Journal of Electrical Power & Energy Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0142061522008018
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijepes.2022.108805
Archivos asociados