Mostrar el registro sencillo del ítem

dc.contributor.author
Matar, Mustafa  
dc.contributor.author
Gill Estevez, Pablo Daniel  
dc.contributor.author
Marchi, Pablo Gabriel  
dc.contributor.author
Messina, Francisco Javier  
dc.contributor.author
Elmoudi, Ramadan  
dc.contributor.author
Wshah, Safwan  
dc.date.available
2024-02-09T15:40:05Z  
dc.date.issued
2023-03  
dc.identifier.citation
Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-11  
dc.identifier.issn
0142-0615  
dc.identifier.uri
http://hdl.handle.net/11336/226670  
dc.description.abstract
Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DEEP LEARNING  
dc.subject
DISSIPATING ENERGY  
dc.subject
FORCED OSCILLATIONS  
dc.subject
PHASOR MEASUREMENT UNIT (PMU)  
dc.subject
TRANSFORMER-BASED DEEP LEARNING  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Transformer-based deep learning model for forced oscillation localization  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-09T14:39:45Z  
dc.journal.volume
146  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Matar, Mustafa. University Of Vermont.; Estados Unidos  
dc.description.fil
Fil: Gill Estevez, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Marchi, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina  
dc.description.fil
Fil: Messina, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Ctro de Simulación Computacional P/aplicaciones Tecnologicas; Argentina  
dc.description.fil
Fil: Elmoudi, Ramadan. No especifíca;  
dc.description.fil
Fil: Wshah, Safwan. University Of Vermont.; Estados Unidos  
dc.journal.title
International Journal of Electrical Power & Energy Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0142061522008018  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijepes.2022.108805