Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Transformer-based deep learning model for forced oscillation localization

Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo GabrielIcon ; Messina, Francisco JavierIcon ; Elmoudi, Ramadan; Wshah, Safwan
Fecha de publicación: 03/2023
Editorial: Elsevier
Revista: International Journal of Electrical Power & Energy Systems
ISSN: 0142-0615
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Accurately locating Forced Oscillations (FOs) source(s) in a large-scale power system is a challenging task, and an important aspect of power system operation. In this paper, a complementary use of Deep Learning (DL)-based and Dissipating Energy Flow (DEF)-based methods are proposed to localize forced oscillation source(s) using data from Phasor Measurement Units (PMUs), by tracing the forced oscillations source(s) on the branch level in the power system network. The robustness, effectiveness and speed of the proposed approach is demonstrated in a WECC 240-bus test system, with high renewable integration in the system. Several simulated cases were tested, including non-gaussian noise, partially observable system, and operational topology variations in the system which correspond to real-world challenges. Timely localization of forced oscillation at an early stage provides the opportunity for taking remedial reaction. The results show that without the information of system operational topology, the proposed method can achieve high localization accuracy in only 0.33 s.
Palabras clave: DEEP LEARNING , DISSIPATING ENERGY , FORCED OSCILLATIONS , PHASOR MEASUREMENT UNIT (PMU) , TRANSFORMER-BASED DEEP LEARNING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.943Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/226670
URL: https://linkinghub.elsevier.com/retrieve/pii/S0142061522008018
DOI: http://dx.doi.org/10.1016/j.ijepes.2022.108805
Colecciones
Articulos(CSC)
Articulos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Matar, Mustafa; Gill Estevez, Pablo Daniel; Marchi, Pablo Gabriel; Messina, Francisco Javier; Elmoudi, Ramadan; et al.; Transformer-based deep learning model for forced oscillation localization; Elsevier; International Journal of Electrical Power & Energy Systems; 146; 3-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES