Mostrar el registro sencillo del ítem

dc.contributor.author
Boccardo, Adrian Dante  
dc.contributor.author
Tong, M.  
dc.contributor.author
Leen, S. B.  
dc.contributor.author
Tourret, D.  
dc.contributor.author
Segurado, J.  
dc.date.available
2024-02-08T13:03:05Z  
dc.date.issued
2023-06  
dc.identifier.citation
Boccardo, Adrian Dante; Tong, M.; Leen, S. B.; Tourret, D.; Segurado, J.; Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models; Elsevier Science; Computational Materials Science; 228; 6-2023; 1-9  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/226378  
dc.description.abstract
Phase-field models are widely employed to simulate microstructure evolution during processes such as solidification or heat treatment. The resulting partial differential equations, often strongly coupled together, may be solved by a broad range of numerical methods, but this often results in a high computational cost, which calls for advanced numerical methods to accelerate their resolution. Here, we quantitatively test the efficiency and accuracy of semi-implicit Fourier spectral-based methods, implemented in Python programming language and parallelized on a graphics processing unit (GPU), for solving a phase-field model coupling Cahn–Hilliard and Allen–Cahn equations. We compare computational performance and accuracy with a standard explicit finite difference (FD) implementation with similar GPU parallelization on the same hardware. For a similar spatial discretization, the semi-implicit Fourier spectral (FS) solvers outperform the FD resolution as soon as the time step can be taken 5 to 6 times higher than afforded for the stability of the FD scheme. The accuracy of the FS methods also remains excellent even for coarse grids, while that of FD deteriorates significantly. Therefore, for an equivalent level of accuracy, semi-implicit FS methods severely outperform explicit FD, by up to 4 orders of magnitude, as they allow much coarser spatial and temporal discretization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FOURIER SPECTRAL METHOD  
dc.subject
GRAPHIC PROCESSING UNIT  
dc.subject
PHASE-FIELD MODEL  
dc.subject
PYTHON PROGRAMMING LANGUAGE  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-08T10:31:06Z  
dc.journal.volume
228  
dc.journal.pagination
1-9  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Boccardo, Adrian Dante. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentina  
dc.description.fil
Fil: Tong, M.. National University Of Ireland Galway.; Irlanda  
dc.description.fil
Fil: Leen, S. B.. National University Of Ireland Galway.; Irlanda  
dc.description.fil
Fil: Tourret, D.. No especifíca;  
dc.description.fil
Fil: Segurado, J.. Universidad Politécnica de Madrid; España  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.commatsci.2023.112313