Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models

Boccardo, Adrian DanteIcon ; Tong, M.; Leen, S. B.; Tourret, D.; Segurado, J.
Fecha de publicación: 06/2023
Editorial: Elsevier Science
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

Phase-field models are widely employed to simulate microstructure evolution during processes such as solidification or heat treatment. The resulting partial differential equations, often strongly coupled together, may be solved by a broad range of numerical methods, but this often results in a high computational cost, which calls for advanced numerical methods to accelerate their resolution. Here, we quantitatively test the efficiency and accuracy of semi-implicit Fourier spectral-based methods, implemented in Python programming language and parallelized on a graphics processing unit (GPU), for solving a phase-field model coupling Cahn–Hilliard and Allen–Cahn equations. We compare computational performance and accuracy with a standard explicit finite difference (FD) implementation with similar GPU parallelization on the same hardware. For a similar spatial discretization, the semi-implicit Fourier spectral (FS) solvers outperform the FD resolution as soon as the time step can be taken 5 to 6 times higher than afforded for the stability of the FD scheme. The accuracy of the FS methods also remains excellent even for coarse grids, while that of FD deteriorates significantly. Therefore, for an equivalent level of accuracy, semi-implicit FS methods severely outperform explicit FD, by up to 4 orders of magnitude, as they allow much coarser spatial and temporal discretization.
Palabras clave: FOURIER SPECTRAL METHOD , GRAPHIC PROCESSING UNIT , PHASE-FIELD MODEL , PYTHON PROGRAMMING LANGUAGE
Ver el registro completo
 
Archivos asociados
Tamaño: 2.853Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/226378
DOI: https://doi.org/10.1016/j.commatsci.2023.112313
Colecciones
Articulos(IDIT)
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Citación
Boccardo, Adrian Dante; Tong, M.; Leen, S. B.; Tourret, D.; Segurado, J.; Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models; Elsevier Science; Computational Materials Science; 228; 6-2023; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES