Mostrar el registro sencillo del ítem

dc.contributor.author
Alarcón, Martín A.  
dc.contributor.author
Alarcón, Rodrigo G.  
dc.contributor.author
González, Alejandro Hernán  
dc.contributor.author
Ferramosca, Antonio  
dc.date.available
2024-02-05T14:27:11Z  
dc.date.issued
2023-11  
dc.identifier.citation
Alarcón, Martín A.; Alarcón, Rodrigo G.; González, Alejandro Hernán; Ferramosca, Antonio; A scenario-based economic-stochastic model predictive control for the management of microgrids; Elsevier; Sustainable Energy, Grids and Networks; 36; 11-2023; 1-13  
dc.identifier.issn
2352-4677  
dc.identifier.uri
http://hdl.handle.net/11336/225820  
dc.description.abstract
The world's electricity generation is heavily dependent on the consumption of fossil fuels. Electric generation from renewable resources is necessary due to the imperative need to reduce greenhouse gases to avoid a climate crisis. These resources exhibit random and intermittent behaviour. Therefore, there is a need to develop new management and control tools for these insertions into the current electricity system. Microgrids have become an effective tool to solve this problem, where these control systems play a principal role. For this reason, an optimal control structure consisting of two Model Predictive Control strategies is proposed for a microgrid Energy Management System. The first controller aims to optimise the microgrid's economic performance under an established criterion, using nominal forecasts of the disturbances on the system, such as the energy generated by renewable resources. The second is a stochastic approach using scenario-based methods to consider forecast errors in the nominal predictions used for the disturbances. The simulations were carried out on a microgrid model corresponding to the National Technological University, Reconquista Regional Faculty, highlighting that actual samples of energy consumption are available. It is worth noting that with the proposed structure, optimal solutions are obtained considering the random behaviour of the disturbances, without making assumptions about the distribution functions of the random variables. Moreover, it applies to different scales of microgrids.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ECONOMIC  
dc.subject
ENERGY MANAGEMENT SYSTEM  
dc.subject
MICROGRID  
dc.subject
MODEL PREDICTIVE CONTROL  
dc.subject
RANDOM CONVEX PROGRAMMES  
dc.subject
SCENARIO OPTIMISATION  
dc.subject
STOCHASTIC  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A scenario-based economic-stochastic model predictive control for the management of microgrids  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-02-02T15:30:51Z  
dc.journal.volume
36  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Alarcón, Martín A.. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina  
dc.description.fil
Fil: Alarcón, Rodrigo G.. Universidad Tecnológica Nacional. Facultad Regional Reconquista; Argentina  
dc.description.fil
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Ferramosca, Antonio. Universidad de Bergamo; Italia  
dc.journal.title
Sustainable Energy, Grids and Networks  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.segan.2023.101205  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352467723002138