Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A scenario-based economic-stochastic model predictive control for the management of microgrids

Alarcón, Martín A.; Alarcón, Rodrigo G.; González, Alejandro HernánIcon ; Ferramosca, Antonio
Fecha de publicación: 11/2023
Editorial: Elsevier
Revista: Sustainable Energy, Grids and Networks
ISSN: 2352-4677
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

The world's electricity generation is heavily dependent on the consumption of fossil fuels. Electric generation from renewable resources is necessary due to the imperative need to reduce greenhouse gases to avoid a climate crisis. These resources exhibit random and intermittent behaviour. Therefore, there is a need to develop new management and control tools for these insertions into the current electricity system. Microgrids have become an effective tool to solve this problem, where these control systems play a principal role. For this reason, an optimal control structure consisting of two Model Predictive Control strategies is proposed for a microgrid Energy Management System. The first controller aims to optimise the microgrid's economic performance under an established criterion, using nominal forecasts of the disturbances on the system, such as the energy generated by renewable resources. The second is a stochastic approach using scenario-based methods to consider forecast errors in the nominal predictions used for the disturbances. The simulations were carried out on a microgrid model corresponding to the National Technological University, Reconquista Regional Faculty, highlighting that actual samples of energy consumption are available. It is worth noting that with the proposed structure, optimal solutions are obtained considering the random behaviour of the disturbances, without making assumptions about the distribution functions of the random variables. Moreover, it applies to different scales of microgrids.
Palabras clave: ECONOMIC , ENERGY MANAGEMENT SYSTEM , MICROGRID , MODEL PREDICTIVE CONTROL , RANDOM CONVEX PROGRAMMES , SCENARIO OPTIMISATION , STOCHASTIC
Ver el registro completo
 
Archivos asociados
Tamaño: 1.003Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225820
DOI: http://dx.doi.org/10.1016/j.segan.2023.101205
URL: https://www.sciencedirect.com/science/article/pii/S2352467723002138
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Alarcón, Martín A.; Alarcón, Rodrigo G.; González, Alejandro Hernán; Ferramosca, Antonio; A scenario-based economic-stochastic model predictive control for the management of microgrids; Elsevier; Sustainable Energy, Grids and Networks; 36; 11-2023; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES