Mostrar el registro sencillo del ítem
dc.contributor.author
Alghamdi, Mona
dc.contributor.author
Angelov, Plamen
dc.contributor.author
Giménez, Raúl
dc.contributor.author
Rufino, Mariana Cristina
dc.contributor.author
Soares, Eduardo
dc.date.available
2024-02-05T09:50:52Z
dc.date.issued
2019
dc.identifier.citation
Self-organising and self-learning model for soybean yield prediction; Sixth International Conference on Social Networks Analysis, Management and Security ; Granada; España; 2019; 441-446
dc.identifier.isbn
978-1-7281-2946-4
dc.identifier.uri
http://hdl.handle.net/11336/225649
dc.description.abstract
Machine learning has arisen with advanced data analytics. Many factors influence crop yield, such as soil, amount of water, climate, and genotype. Determining factors that significantly influence yield prediction and identify the most appropriate predictive methods are important in yield management. It is critical to consider and study the combination of different crop factors and their impact on the yield. The objectives of this paper are: (1) to use advanced data analytic techniques to precisely predict the soybean crop yields, (2) to identify the most influential features that impact soybean predictions, (3) to illustrate the ability of Fuzzy Rule-Based (FRB) sub-systems, which are self-organizing, self-learning, and data-driven, by using the recently developed Autonomous Learning Multiple-Model First-order (ALMMo-1) system, and (4) to compare the performance with other well-known methods. The ALMMo-1 system is a transparent model, which stakeholders can easily read and interpret. The model is a data-driven and composed of prototypes selected from the actual data. Many factors affect the yield, and data clouds can be formed in the feature/data space based on the data density. The data cloud is the key to the IF part of FRB sub-systems, while the THEN part (the consequences of the IF condition) illustrates the yield prediction in the form of a linear regression model, which consists of the yield features or factors. In addition, the model can determine the most influential features of the yield prediction online. The model shows an excellent prediction accuracy with a Root Mean Square Error (RMSE) of 0.0883, and Non-Dimensional Error Index (NDEI) of 0.0611, which is competitive with state-of-the-art methods.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AUTONOMOUS LEARNING
dc.subject
FUZZY RULE BASED
dc.subject
MULTI MODAL
dc.subject
LINEAR REGRESSION
dc.subject
SOYBEAN YIELD PREDICTION
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Self-organising and self-learning model for soybean yield prediction
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-02-16T11:08:54Z
dc.journal.pagination
441-446
dc.journal.pais
España
dc.journal.ciudad
Granada
dc.description.fil
Fil: Alghamdi, Mona. Lancaster University; Reino Unido
dc.description.fil
Fil: Angelov, Plamen. Lancaster University; Reino Unido
dc.description.fil
Fil: Giménez, Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.description.fil
Fil: Rufino, Mariana Cristina. Lancaster University; Reino Unido
dc.description.fil
Fil: Soares, Eduardo. Lancaster University; Reino Unido
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8931888
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/SNAMS.2019.8931888
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
Sixth International Conference on Social Networks Analysis, Management and Security
dc.date.evento
2019-10-22
dc.description.ciudadEvento
Granada
dc.description.paisEvento
España
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
Sixth International Conference on Social Networks Analysis, Management and Security
dc.date.eventoHasta
2019-10-25
dc.type
Conferencia
Archivos asociados