Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Self-organising and self-learning model for soybean yield prediction

Alghamdi, Mona; Angelov, Plamen; Giménez, RaúlIcon ; Rufino, Mariana Cristina; Soares, Eduardo
Tipo del evento: Conferencia
Nombre del evento: Sixth International Conference on Social Networks Analysis, Management and Security
Fecha del evento: 22/10/2019
Institución Organizadora: Institute of Electrical and Electronics Engineers;
Título del Libro: Sixth International Conference on Social Networks Analysis, Management and Security
Editorial: Institute of Electrical and Electronics Engineers
ISBN: 978-1-7281-2946-4
Idioma: Inglés
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Machine learning has arisen with advanced data analytics. Many factors influence crop yield, such as soil, amount of water, climate, and genotype. Determining factors that significantly influence yield prediction and identify the most appropriate predictive methods are important in yield management. It is critical to consider and study the combination of different crop factors and their impact on the yield. The objectives of this paper are: (1) to use advanced data analytic techniques to precisely predict the soybean crop yields, (2) to identify the most influential features that impact soybean predictions, (3) to illustrate the ability of Fuzzy Rule-Based (FRB) sub-systems, which are self-organizing, self-learning, and data-driven, by using the recently developed Autonomous Learning Multiple-Model First-order (ALMMo-1) system, and (4) to compare the performance with other well-known methods. The ALMMo-1 system is a transparent model, which stakeholders can easily read and interpret. The model is a data-driven and composed of prototypes selected from the actual data. Many factors affect the yield, and data clouds can be formed in the feature/data space based on the data density. The data cloud is the key to the IF part of FRB sub-systems, while the THEN part (the consequences of the IF condition) illustrates the yield prediction in the form of a linear regression model, which consists of the yield features or factors. In addition, the model can determine the most influential features of the yield prediction online. The model shows an excellent prediction accuracy with a Root Mean Square Error (RMSE) of 0.0883, and Non-Dimensional Error Index (NDEI) of 0.0611, which is competitive with state-of-the-art methods.
Palabras clave: AUTONOMOUS LEARNING , FUZZY RULE BASED , MULTI MODAL , LINEAR REGRESSION , SOYBEAN YIELD PREDICTION
Ver el registro completo
 
Archivos asociados
Tamaño: 295.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225649
URL: https://ieeexplore.ieee.org/document/8931888
DOI: http://dx.doi.org/10.1109/SNAMS.2019.8931888
Colecciones
Eventos(IMASL)
Eventos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Self-organising and self-learning model for soybean yield prediction; Sixth International Conference on Social Networks Analysis, Management and Security ; Granada; España; 2019; 441-446
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES