Mostrar el registro sencillo del ítem
dc.contributor.author
Pazos, Bruno Alfredo
dc.contributor.author
Navarro, Jose Pablo
dc.contributor.author
de Azevedo, Soledad
dc.contributor.author
Delrieux, Claudio Augusto
dc.contributor.author
Gonzalez-Jose, Rolando
dc.date.available
2024-02-02T12:39:02Z
dc.date.issued
2022
dc.identifier.citation
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications; 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios; Argentina; 2022; 1-7
dc.identifier.uri
http://hdl.handle.net/11336/225584
dc.description.abstract
The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Comité organizador del Practical Machine Learning for Developing Countries
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
SEGMENTATION
dc.subject
3D RECONSTRUCTION
dc.subject
CONVOLUTIONAL NEURAL NETWORKS
dc.subject
RESPIRATORY HEALTHCARE
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-09-15T11:39:05Z
dc.journal.pagination
1-7
dc.description.fil
Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
dc.description.fil
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
dc.description.fil
Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Ciencias de Las Imágenes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pml4dc.github.io/iclr2022/papers.html
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Workshop
dc.description.nombreEvento
3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios
dc.date.evento
2022-04-29
dc.description.paisEvento
Argentina
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Comité organizador del Practical Machine Learning for Developing Countries
dc.source.libro
3rd Practical Machine Learning for Developing Countries: Learning under limited/low resource scenarios
dc.date.eventoHasta
2022-04-29
dc.type
Workshop
Archivos asociados