Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Encoding upper nasal airway structure with U-Net for respiratory healthcare applications

Pazos, Bruno AlfredoIcon ; Navarro, Jose PabloIcon ; de Azevedo, SoledadIcon ; Delrieux, Claudio AugustoIcon ; Gonzalez-Jose, RolandoIcon
Tipo del evento: Workshop
Nombre del evento: 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios
Fecha del evento: 29/04/2022
Institución Organizadora: Comité organizador del Practical Machine Learning for Developing Countries;
Título del Libro: 3rd Practical Machine Learning for Developing Countries: Learning under limited/low resource scenarios
Editorial: Comité organizador del Practical Machine Learning for Developing Countries
Idioma: Inglés
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This  process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%).
Palabras clave: SEGMENTATION , 3D RECONSTRUCTION , CONVOLUTIONAL NEURAL NETWORKS , RESPIRATORY HEALTHCARE
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.262Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225584
URL: https://pml4dc.github.io/iclr2022/papers.html
Colecciones
Eventos(IPCSH)
Eventos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications; 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios; Argentina; 2022; 1-7
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES