Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA

García, CamilaIcon ; Narata, Ana Paula; Liu, Jianmin; Fang, Yibin; Larrabide, IgnacioIcon
Fecha de publicación: 10/2023
Editorial: Springer
Revista: Cardiovascular Engineering and Technology
ISSN: 1869-408X
e-ISSN: 1869-4098
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Purpose: When performing a brain arteriovenous malformation (bAVMs) intervention, computer-assisted analysis of bAVMs can aid clinicians in planning precise therapeutic alternatives. Therefore, we aim to assess currently available methods for bAVMs nidus extent identification over 3DRA. To this end, we establish a unified framework to contrast them over the same dataset, fully automatising the workflows. Materials and Methods: We retrospectively collected contrast-enhanced 3DRA scans of patients with bAVMs. A segmentation network was used to automatically acquire the brain vessels segmentation for each case. We applied the nidus extent identification algorithms over each of the segmentations, computing overlap measurements against manual nidus delineations. Results: We evaluated the methods over a private dataset with 22 3DRA scans of individuals with bAVMs. The best-performing alternatives resulted in 0.82± 0.14 and 0.81± 0.16 dice coefficient values. Conclusions: The mathematical morphology-based approach showed higher robustness through inter-case variability. The skeleton-based approach leverages the skeleton topomorphology characteristics, while being highly sensitive to anatomical variations and the skeletonisation method employed. Overall, nidus extent identification algorithms are also limited by the quality of the raw volume, as the consequent imprecise vessel segmentation will hinder their results. Performance of the available alternatives remains subpar. This analysis allows for a better understanding of the current limitations.
Palabras clave: ANGIOGRAPHY , AVM , NIDUS IDENTIFICATION , VASCULAR-INTERVENTIONAL
Ver el registro completo
 
Archivos asociados
Tamaño: 1.401Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/225404
URL: https://link.springer.com/10.1007/s13239-023-00688-w
DOI: http://dx.doi.org/10.1007/s13239-023-00688-w
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
García, Camila; Narata, Ana Paula; Liu, Jianmin; Fang, Yibin; Larrabide, Ignacio; Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA; Springer; Cardiovascular Engineering and Technology; 14; 6; 10-2023; 801-809
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES