Mostrar el registro sencillo del ítem

dc.contributor.author
García, Camila  
dc.contributor.author
Narata, Ana Paula  
dc.contributor.author
Liu, Jianmin  
dc.contributor.author
Fang, Yibin  
dc.contributor.author
Larrabide, Ignacio  
dc.date.available
2024-02-01T11:59:46Z  
dc.date.issued
2023-10  
dc.identifier.citation
García, Camila; Narata, Ana Paula; Liu, Jianmin; Fang, Yibin; Larrabide, Ignacio; Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA; Springer; Cardiovascular Engineering and Technology; 14; 6; 10-2023; 801-809  
dc.identifier.issn
1869-408X  
dc.identifier.uri
http://hdl.handle.net/11336/225404  
dc.description.abstract
Purpose: When performing a brain arteriovenous malformation (bAVMs) intervention, computer-assisted analysis of bAVMs can aid clinicians in planning precise therapeutic alternatives. Therefore, we aim to assess currently available methods for bAVMs nidus extent identification over 3DRA. To this end, we establish a unified framework to contrast them over the same dataset, fully automatising the workflows. Materials and Methods: We retrospectively collected contrast-enhanced 3DRA scans of patients with bAVMs. A segmentation network was used to automatically acquire the brain vessels segmentation for each case. We applied the nidus extent identification algorithms over each of the segmentations, computing overlap measurements against manual nidus delineations. Results: We evaluated the methods over a private dataset with 22 3DRA scans of individuals with bAVMs. The best-performing alternatives resulted in 0.82± 0.14 and 0.81± 0.16 dice coefficient values. Conclusions: The mathematical morphology-based approach showed higher robustness through inter-case variability. The skeleton-based approach leverages the skeleton topomorphology characteristics, while being highly sensitive to anatomical variations and the skeletonisation method employed. Overall, nidus extent identification algorithms are also limited by the quality of the raw volume, as the consequent imprecise vessel segmentation will hinder their results. Performance of the available alternatives remains subpar. This analysis allows for a better understanding of the current limitations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANGIOGRAPHY  
dc.subject
AVM  
dc.subject
NIDUS IDENTIFICATION  
dc.subject
VASCULAR-INTERVENTIONAL  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Comparative Study of Automated Algorithms for Brain Arteriovenous Malformation Nidus Extent Identification Using 3DRA  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-30T15:43:04Z  
dc.identifier.eissn
1869-4098  
dc.journal.volume
14  
dc.journal.number
6  
dc.journal.pagination
801-809  
dc.journal.pais
Alemania  
dc.description.fil
Fil: García, Camila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina  
dc.description.fil
Fil: Narata, Ana Paula. University of Southampton; Reino Unido  
dc.description.fil
Fil: Liu, Jianmin. Changhai Hospital; China  
dc.description.fil
Fil: Fang, Yibin. Tongji University; China  
dc.description.fil
Fil: Larrabide, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina  
dc.journal.title
Cardiovascular Engineering and Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13239-023-00688-w  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13239-023-00688-w