Mostrar el registro sencillo del ítem

dc.contributor.author
Costa Dourado, Mitre  
dc.contributor.author
Grippo, Luciano Norberto  
dc.contributor.author
Safe, Martin Dario  
dc.date.available
2024-01-25T15:25:27Z  
dc.date.issued
2023-05  
dc.identifier.citation
Costa Dourado, Mitre; Grippo, Luciano Norberto; Safe, Martin Dario; On the generalized Helly property of hypergraphs, cliques, and bicliques; Elsevier Science; Discrete Applied Mathematics; 330; 5-2023; 56-77  
dc.identifier.issn
0166-218X  
dc.identifier.uri
http://hdl.handle.net/11336/224886  
dc.description.abstract
A family of sets is (p,q)-intersecting if every nonempty subfamily of p or fewer sets has at least q elements in its total intersection. A family of sets has the (p,q)-Helly property if every nonempty (p,q)-intersecting subfamily has total intersection of cardinality at least q. The (2,1)-Helly property is the usual Helly property. A hypergraph is (p,q)-Helly if its edge family has the (p,q)-Helly property and hereditary (p,q)-Helly if each of its subhypergraphs has the (p,q)-Helly property. A graph is (p,q)-clique-Helly if the family of its maximal cliques has the (p,q)-Helly property and hereditary (p,q)-clique-Helly if each of its induced subgraphs is (p,q)-clique-Helly. The classes of (p,q)-biclique-Helly and hereditary (p,q)-biclique-Helly graphs are defined analogously. In this work, we prove several characterizations of hereditary (p,q)-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs. On the algorithmic side, we give an improved time bound for the recognition of (p,q)-Helly hypergraphs for each fixed q and show that the recognition of hereditary (p,q)-Helly hypergraphs can be solved in polynomial time if p and q are fixed and co-NP-complete if p is part of the input. In addition, we generalize the characterization of p-clique-Helly graphs in terms of expansions to (p,q)-clique-Helly graphs and give different characterizations of hereditary (p,q)-clique-Helly graphs, including one by forbidden induced subgraphs. We give an improvement on the time bound for the recognition of (p,q)-clique-Helly graphs and prove that the recognition problem of hereditary (p,q)-clique-Helly graphs is polynomial-time solvable for p and q fixed and NP-hard if p or q is part of the input. Finally, we provide different characterizations, give recognition algorithms, and prove hardness results for (p,q)-biclique-Helly graphs and hereditary (p,q)-biclique-Helly graphs which are analogous to those for (p,q)-clique-Helly and hereditary (p,q)-clique-Helly graphs.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FORBIDDEN INDUCED SUBGRAPHS  
dc.subject
FORBIDDEN PARTIAL SUBHYPERGRAPHS  
dc.subject
GENERALIZED HELLY PROPERTY  
dc.subject
HELLY HYPERGRAPHS  
dc.subject
MAXIMAL BICLIQUES  
dc.subject
MAXIMAL CLIQUES  
dc.subject
RECOGNITION ALGORITHMS  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On the generalized Helly property of hypergraphs, cliques, and bicliques  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2024-01-23T14:51:54Z  
dc.journal.volume
330  
dc.journal.pagination
56-77  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Costa Dourado, Mitre. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.description.fil
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.journal.title
Discrete Applied Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X23000094  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2023.01.006