Mostrar el registro sencillo del ítem
dc.contributor.author
Costa Dourado, Mitre
dc.contributor.author
Grippo, Luciano Norberto
dc.contributor.author
Safe, Martin Dario
dc.date.available
2024-01-25T15:25:27Z
dc.date.issued
2023-05
dc.identifier.citation
Costa Dourado, Mitre; Grippo, Luciano Norberto; Safe, Martin Dario; On the generalized Helly property of hypergraphs, cliques, and bicliques; Elsevier Science; Discrete Applied Mathematics; 330; 5-2023; 56-77
dc.identifier.issn
0166-218X
dc.identifier.uri
http://hdl.handle.net/11336/224886
dc.description.abstract
A family of sets is (p,q)-intersecting if every nonempty subfamily of p or fewer sets has at least q elements in its total intersection. A family of sets has the (p,q)-Helly property if every nonempty (p,q)-intersecting subfamily has total intersection of cardinality at least q. The (2,1)-Helly property is the usual Helly property. A hypergraph is (p,q)-Helly if its edge family has the (p,q)-Helly property and hereditary (p,q)-Helly if each of its subhypergraphs has the (p,q)-Helly property. A graph is (p,q)-clique-Helly if the family of its maximal cliques has the (p,q)-Helly property and hereditary (p,q)-clique-Helly if each of its induced subgraphs is (p,q)-clique-Helly. The classes of (p,q)-biclique-Helly and hereditary (p,q)-biclique-Helly graphs are defined analogously. In this work, we prove several characterizations of hereditary (p,q)-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs. On the algorithmic side, we give an improved time bound for the recognition of (p,q)-Helly hypergraphs for each fixed q and show that the recognition of hereditary (p,q)-Helly hypergraphs can be solved in polynomial time if p and q are fixed and co-NP-complete if p is part of the input. In addition, we generalize the characterization of p-clique-Helly graphs in terms of expansions to (p,q)-clique-Helly graphs and give different characterizations of hereditary (p,q)-clique-Helly graphs, including one by forbidden induced subgraphs. We give an improvement on the time bound for the recognition of (p,q)-clique-Helly graphs and prove that the recognition problem of hereditary (p,q)-clique-Helly graphs is polynomial-time solvable for p and q fixed and NP-hard if p or q is part of the input. Finally, we provide different characterizations, give recognition algorithms, and prove hardness results for (p,q)-biclique-Helly graphs and hereditary (p,q)-biclique-Helly graphs which are analogous to those for (p,q)-clique-Helly and hereditary (p,q)-clique-Helly graphs.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FORBIDDEN INDUCED SUBGRAPHS
dc.subject
FORBIDDEN PARTIAL SUBHYPERGRAPHS
dc.subject
GENERALIZED HELLY PROPERTY
dc.subject
HELLY HYPERGRAPHS
dc.subject
MAXIMAL BICLIQUES
dc.subject
MAXIMAL CLIQUES
dc.subject
RECOGNITION ALGORITHMS
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the generalized Helly property of hypergraphs, cliques, and bicliques
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2024-01-23T14:51:54Z
dc.journal.volume
330
dc.journal.pagination
56-77
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Costa Dourado, Mitre. Universidade Federal do Rio de Janeiro; Brasil
dc.description.fil
Fil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.description.fil
Fil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
dc.journal.title
Discrete Applied Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X23000094
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2023.01.006
Archivos asociados