Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the generalized Helly property of hypergraphs, cliques, and bicliques

Costa Dourado, Mitre; Grippo, Luciano NorbertoIcon ; Safe, Martin DarioIcon
Fecha de publicación: 05/2023
Editorial: Elsevier Science
Revista: Discrete Applied Mathematics
ISSN: 0166-218X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

A family of sets is (p,q)-intersecting if every nonempty subfamily of p or fewer sets has at least q elements in its total intersection. A family of sets has the (p,q)-Helly property if every nonempty (p,q)-intersecting subfamily has total intersection of cardinality at least q. The (2,1)-Helly property is the usual Helly property. A hypergraph is (p,q)-Helly if its edge family has the (p,q)-Helly property and hereditary (p,q)-Helly if each of its subhypergraphs has the (p,q)-Helly property. A graph is (p,q)-clique-Helly if the family of its maximal cliques has the (p,q)-Helly property and hereditary (p,q)-clique-Helly if each of its induced subgraphs is (p,q)-clique-Helly. The classes of (p,q)-biclique-Helly and hereditary (p,q)-biclique-Helly graphs are defined analogously. In this work, we prove several characterizations of hereditary (p,q)-Helly hypergraphs, including one by minimal forbidden partial subhypergraphs. On the algorithmic side, we give an improved time bound for the recognition of (p,q)-Helly hypergraphs for each fixed q and show that the recognition of hereditary (p,q)-Helly hypergraphs can be solved in polynomial time if p and q are fixed and co-NP-complete if p is part of the input. In addition, we generalize the characterization of p-clique-Helly graphs in terms of expansions to (p,q)-clique-Helly graphs and give different characterizations of hereditary (p,q)-clique-Helly graphs, including one by forbidden induced subgraphs. We give an improvement on the time bound for the recognition of (p,q)-clique-Helly graphs and prove that the recognition problem of hereditary (p,q)-clique-Helly graphs is polynomial-time solvable for p and q fixed and NP-hard if p or q is part of the input. Finally, we provide different characterizations, give recognition algorithms, and prove hardness results for (p,q)-biclique-Helly graphs and hereditary (p,q)-biclique-Helly graphs which are analogous to those for (p,q)-clique-Helly and hereditary (p,q)-clique-Helly graphs.
Palabras clave: FORBIDDEN INDUCED SUBGRAPHS , FORBIDDEN PARTIAL SUBHYPERGRAPHS , GENERALIZED HELLY PROPERTY , HELLY HYPERGRAPHS , MAXIMAL BICLIQUES , MAXIMAL CLIQUES , RECOGNITION ALGORITHMS
Ver el registro completo
 
Archivos asociados
Tamaño: 537.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224886
URL: https://www.sciencedirect.com/science/article/pii/S0166218X23000094
DOI: http://dx.doi.org/10.1016/j.dam.2023.01.006
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Costa Dourado, Mitre; Grippo, Luciano Norberto; Safe, Martin Dario; On the generalized Helly property of hypergraphs, cliques, and bicliques; Elsevier Science; Discrete Applied Mathematics; 330; 5-2023; 56-77
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES