Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Source space connectomics of neurodegeneration: One-metric approach does not fit all

Prado, Pavel; Moguilner, Sebastian Gabriel; Mejía, Jhony A.; Sainz Ballesteros, Agustín; Otero, Mónica; Birba, AgustinaIcon ; Santamaria Garcia, HernandoIcon ; Legaz, AgustinaIcon ; Fittipaldi, María SolIcon ; Cruzat, Josephine; Tagliazucchi, Enzo RodolfoIcon ; Parra, Mario; Herzog, Rubén; Ibañez, Agustin MarianoIcon
Fecha de publicación: 04/2023
Editorial: Academic Press Inc Elsevier Science
Revista: Neurobiology of Disease
ISSN: 0969-9961
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Neurociencias

Resumen

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.
Palabras clave: COMPOSITE CONNECTIVITY METRIC , CONNECTOMICS , DEMENTIA BIOMARKER , EEG SOURCE-SPACE , MULTI-FEATURE MACHINE LEARNING CLASSIFICATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.742Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/224803
DOI: http://dx.doi.org/10.1016/j.nbd.2023.106047
Colecciones
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Prado, Pavel; Moguilner, Sebastian Gabriel; Mejía, Jhony A.; Sainz Ballesteros, Agustín; Otero, Mónica; et al.; Source space connectomics of neurodegeneration: One-metric approach does not fit all; Academic Press Inc Elsevier Science; Neurobiology of Disease; 179; 4-2023; 1-16
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES