Artículo
DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation
Fecha de publicación:
09/2023
Editorial:
American Chemical Society
Revista:
Journal of Natural Products
ISSN:
0163-3864
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
DP4+ is one of the most popular methods for the structure elucidation of natural products using NMR calculations. While the method is simple and easy to implement, it requires a series of procedures that can be tedious, coupled with the fact that its computational demand can be high in certain cases. In this work, we made a substantial improvement to these limitations. First, we deeply explored the effect of molecular mechanics architecture on the DP4+ formalism (MM-DP4+). In addition, a Python applet (DP4+App) was developed to automate the entire process, requiring only the Gaussian NMR output files and a spreadsheet containing the experimental NMR data and labels. The script is designed to use the statistical parameters from the original 24 levels of theory (employing B3LYP/6-31G* geometries) and the new 36 levels explored in this work (over MMFF geometries). Furthermore, it enables the development of customizable methods using any desired level of theory, allowing for a free choice of test molecules.
Palabras clave:
STRUCTURAL ELUCIDATION
,
NMR
,
COMPUTATIONAL CHEMISTRY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Articulos de INST.DE QUIMICA ROSARIO
Citación
Franco, Bruno Agustín; Luciano, Ezequiel Rodrigo; Sarotti, Ariel Marcelo; Zanardi, Maria Marta; DP4+App: Finding the Best Balance between Computational Cost and Predictive Capacity in the Structure Elucidation Process by DP4+. Factors Analysis and Automation; American Chemical Society; Journal of Natural Products; 86; 10; 9-2023; 2360-2367
Compartir
Altmétricas