Mostrar el registro sencillo del ítem
dc.contributor.author
Luna, Martín Francisco
dc.contributor.author
Martinez, Ernesto Carlos
dc.date.available
2017-08-15T14:48:32Z
dc.date.issued
2014-08
dc.identifier.citation
Luna, Martín Francisco; Martinez, Ernesto Carlos; A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 8-2014; 17252-17266
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/22438
dc.description.abstract
Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Run-To-Run Optimization
dc.subject
Bioprocess
dc.subject
Tendency Models
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-08-04T15:35:08Z
dc.journal.volume
53
dc.journal.number
44
dc.journal.pagination
17252-17266
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.description.fil
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ie500453e
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie500453e
Archivos asociados