Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models

Luna, Martín FranciscoIcon ; Martinez, Ernesto CarlosIcon
Fecha de publicación: 08/2014
Editorial: American Chemical Society
Revista: Industrial & Engineering Chemical Research
ISSN: 0888-5885
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

Increasing demand for recombinant proteins (including monoclonal antibodies) where time to market is critical could benefit from the use of model-based optimization of cell viability and productivity. Owing to the complexity of metabolic regulation, unstructured models of animal cell cultures typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A Bayesian optimization strategy which integrates tendency models with iterative policy learning is proposed. Parameter distributions in a probabilistic model of bioreactor performance are re-estimated using data from experiments designed for maximizing information content and productivity. Results obtained highlight that experimental design for run-to-run optimization using a probabilistic tendency model is effective to maximize biomass growth even though significant model uncertainty is present. A hybrid cybernetic model of a myeloma cell culture coconsuming glucose and glutamine is used to simulate data to demonstrate the efficacy of the proposed approach.
Palabras clave: Run-To-Run Optimization , Bioprocess , Tendency Models
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.463Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/22438
DOI: http://dx.doi.org/10.1021/ie500453e
URL: http://pubs.acs.org/doi/abs/10.1021/ie500453e
Colecciones
Articulos(INGAR)
Articulos de INST.DE DESARROLLO Y DISEÑO (I)
Citación
Luna, Martín Francisco; Martinez, Ernesto Carlos; A Bayesian Approach to Run-to-Run Optimization of Animal Cell Bioreactors Using Probabilistic Tendency Models; American Chemical Society; Industrial & Engineering Chemical Research; 53; 44; 8-2014; 17252-17266
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES