Artículo
Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes
Fecha de publicación:
07/2023
Editorial:
Springer/Plenum Publishers
Revista:
Journal Of Scientific Computing
ISSN:
0885-7474
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The goal of this paper is to provide almost robust approximations of singularly perturbed reaction-diffusion equations in two dimensions by using finite elements on graded meshes. When the mesh grading parameter is appropriately chosen, we obtain quasioptimal error estimations in a balanced norm for piecewise bilinear elements, by using a weighted variational formulation of the problem introduced by N. Madden and M. Stynes, Calcolo 58(2) 2021. We also prove a supercloseness result, namely, that the difference between the finite element solution and the Lagrange interpolation of the exact solution, in the weighted balanced norm, is of higher order than the error itself. We finish the work with numerical examples which show the good performance of our approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Armentano, Maria Gabriela; Lombardi, Ariel Luis; Penessi, Cecilia; Robust Estimates in Balanced Norms for Singularly Perturbed Reaction Diffusion Equations Using Graded Meshes; Springer/Plenum Publishers; Journal Of Scientific Computing; 96; 1; 7-2023; 1-34
Compartir
Altmétricas