Evento
Box-ball system: soliton and tree decomposition of excursions
Tipo del evento:
Simposio
Nombre del evento:
XIII Symposium on Probability and Stochastic Processes
Fecha del evento:
04/12/2017
Institución Organizadora:
Universidad Nacional Autónoma de México;
Título del Libro:
XIII Symposium on Probability and Stochastic Processes
Editorial:
Springer
ISBN:
978-3-030-57512-0
Idioma:
Inglés
Clasificación temática:
Resumen
We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1∕2 is in correspondence with a simple random walk with negative drift 2λ − 1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.
Palabras clave:
BOX-BALL SYSTEM
,
SOLITONS
,
EXCURSIONS
,
PLANAR TREES
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IMAS)
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Box-ball system: soliton and tree decomposition of excursions; XIII Symposium on Probability and Stochastic Processes; México; 2017; 107-152
Compartir
Altmétricas