Mostrar el registro sencillo del ítem
dc.contributor.author
Jia, Hao
dc.contributor.author
Huang, Zihao
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Duan, Feng
dc.contributor.author
Zhang, Yu
dc.contributor.author
Sun, Zhe
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2023-12-28T13:53:10Z
dc.date.issued
2023-11
dc.identifier.citation
Jia, Hao; Huang, Zihao; Caiafa, César Federico; Duan, Feng; Zhang, Yu; et al.; Assessing the Potential of Data Augmentation in EEG Functional Connectivity for Early Detection of Alzheimer’s Disease; Springer; Cognitive Computation; 11-2023
dc.identifier.issn
1866-9956
dc.identifier.uri
http://hdl.handle.net/11336/221800
dc.description.abstract
Electroencephalographic (EEG) signals are acquired non-invasively from electrodes placed on the scalp. Experts in the field can use EEG signals to distinguish between patients with Alzheimer’s disease (AD) and normal control (NC) subjects using classification models. However, the training of deep learning or machine learning models requires a large number of trials. Datasets related to Alzheimer’s disease are typically small in size due to the lack of AD patient samples. The lack of data samples required for the training process limits the use of deep learning techniques for further development in clinical settings. We propose to increase the number of trials in the training set by means of a decomposition–recombination system consisting of three steps. Firstly, the original signals from the training set are decomposed into multiple intrinsic mode functions via multivariate empirical mode decomposition. Next, these intrinsic mode functions are randomly recombined across trials. Finally, the recombined intrinsic mode functions are added together as artificial trials, which are used for training the models. We evaluated the decomposition–recombination system on a small dataset using each subject’s functional connectivity matrices as inputs. Three different neural networks, including ResNet, BrainNet CNN, and EEGNet, were used. Overall, the system helped improve ResNet training in both the mild AD dataset, with an increase of 5.24%, and in the mild cognitive impairment dataset, with an increase of 4.50%. The evaluation of the proposed data augmentation system shows that the performance of neural networks can be improved by enhancing the training set with data augmentation. This work shows the need for data augmentation on the training of neural networks in the case of small-size AD datasets.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EEG
dc.subject
Alzheimer disease
dc.subject
Data augmentation
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Assessing the Potential of Data Augmentation in EEG Functional Connectivity for Early Detection of Alzheimer’s Disease
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-26T14:17:51Z
dc.identifier.eissn
1866-9964
dc.journal.pais
Alemania
dc.description.fil
Fil: Jia, Hao. Universitat de Vic; España. Nankai University; China
dc.description.fil
Fil: Huang, Zihao. Nankai University; China
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos
dc.description.fil
Fil: Sun, Zhe. Juntendo University; China
dc.description.fil
Fil: Solé Casals, Jordi. Universitat de Vic; España
dc.journal.title
Cognitive Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12559-023-10188-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12559-023-10188-7
Archivos asociados