Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessing the Potential of Data Augmentation in EEG Functional Connectivity for Early Detection of Alzheimer’s Disease

Jia, Hao; Huang, Zihao; Caiafa, César FedericoIcon ; Duan, Feng; Zhang, Yu; Sun, Zhe; Solé Casals, Jordi
Fecha de publicación: 11/2023
Editorial: Springer
Revista: Cognitive Computation
ISSN: 1866-9956
e-ISSN: 1866-9964
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Electroencephalographic (EEG) signals are acquired non-invasively from electrodes placed on the scalp. Experts in the field can use EEG signals to distinguish between patients with Alzheimer’s disease (AD) and normal control (NC) subjects using classification models. However, the training of deep learning or machine learning models requires a large number of trials. Datasets related to Alzheimer’s disease are typically small in size due to the lack of AD patient samples. The lack of data samples required for the training process limits the use of deep learning techniques for further development in clinical settings. We propose to increase the number of trials in the training set by means of a decomposition–recombination system consisting of three steps. Firstly, the original signals from the training set are decomposed into multiple intrinsic mode functions via multivariate empirical mode decomposition. Next, these intrinsic mode functions are randomly recombined across trials. Finally, the recombined intrinsic mode functions are added together as artificial trials, which are used for training the models. We evaluated the decomposition–recombination system on a small dataset using each subject’s functional connectivity matrices as inputs. Three different neural networks, including ResNet, BrainNet CNN, and EEGNet, were used. Overall, the system helped improve ResNet training in both the mild AD dataset, with an increase of 5.24%, and in the mild cognitive impairment dataset, with an increase of 4.50%. The evaluation of the proposed data augmentation system shows that the performance of neural networks can be improved by enhancing the training set with data augmentation. This work shows the need for data augmentation on the training of neural networks in the case of small-size AD datasets.
Palabras clave: EEG , Alzheimer disease , Data augmentation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.634Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/221800
DOI: http://dx.doi.org/10.1007/s12559-023-10188-7
URL: https://link.springer.com/article/10.1007/s12559-023-10188-7
Colecciones
Articulos(IAR)
Articulos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
Jia, Hao; Huang, Zihao; Caiafa, César Federico; Duan, Feng; Zhang, Yu; et al.; Assessing the Potential of Data Augmentation in EEG Functional Connectivity for Early Detection of Alzheimer’s Disease; Springer; Cognitive Computation; 11-2023
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES