Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish

Tessore, Juan PabloIcon ; Esnaola, Leonardo Martín; Ramon, Hugo Dionisio; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia
Fecha de publicación: 10/2022
Editorial: Springer
Revista: Multimedia Tools And Applications
ISSN: 1380-7501
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

Resumen

Basic emotion classification is one of the main tasks of Sentiment Analysis usually performed by using several machine learning techniques. One of the main issues in Sentiment Analysis is the availability of tagged resources to properly train supervised classification algorithms. This is of particular concern in languages other than English, such as Spanish, where scarcity of these resources is the norm. In addition, most basic emotion datasets available in Spanish are rather small, containing a few hundred (or thousand) samples. Usually, the samples only contain a short text (frequently a comment) and a tag (the basic emotion), omitting crucial contextual information that may help to improve the classification task results. In this paper, the impact of using contextual information is measured on a recently published Spanish basic emotion dataset and the baseline architecture proposed in the Semantic Evaluation 2019 competition. This particular dataset has two main advantages for this paper. First, it was compiled using Distant Supervision and as a result it contains several hundred thousand samples. Secondly, the authors included valuable contextual information for each comment. The results show that contextual information, such as news headlines or summaries, helps improve the classification accuracy over a dataset of distantly supervised basic emotion labelled comments.
Palabras clave: BASIC EMOTION CLASSIFICATION , CONTEXTUAL INFORMATION , DISTANT SUPERVISION , SOCIAL MEDIA
Ver el registro completo
 
Archivos asociados
Tamaño: 1.901Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/221670
DOI: http://dx.doi.org/10.1007/s11042-022-13750-x
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Tessore, Juan Pablo; Esnaola, Leonardo Martín; Ramon, Hugo Dionisio; Lanzarini, Laura Cristina; Baldassarri, Sandra Silvia; Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish; Springer; Multimedia Tools And Applications; 82; 7; 10-2022; 9871-9890
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES