Mostrar el registro sencillo del ítem

dc.contributor.author
Raviola, Lisandro  
dc.contributor.author
de Leo, Mariano Fernando  
dc.date.available
2023-12-22T16:40:23Z  
dc.date.issued
2024-04-01  
dc.identifier.citation
Raviola, Lisandro ; de Leo, Mariano Fernando; Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations; Elsevier Science Inc.; Applied Mathematics and Computation; 466; 1-4-2024; 1-21; 128428  
dc.identifier.issn
0096-3003  
dc.identifier.uri
http://hdl.handle.net/11336/221272  
dc.description.abstract
We evaluate the performance of novel numerical methods for solving one-dimensional nonlinear fractional dispersive and dissipative evolution equations. The methods are based on affine combinations of time-splitting integrators and pseudo-spectral discretizations using Hermite and Fourier expansions. We show the effectiveness of the proposed methods by numerically computing the dynamics of soliton solutions of the the standard and fractional variants of the nonlinear Schrödinger equation (NLSE) and the complex Ginzburg-Landau equation (CGLE), and by comparing the results with those obtained by standard splitting integrators. An exhaustive numerical investigation shows that the new technique is competitive when compared to traditional composition-splitting schemes for the case of Hamiltonian problems both in terms accuracy and computational cost. Moreover, it is applicable straightforwardly to irreversible models, outperforming high-order symplectic integrators which could become unstable due to their need of negative time steps. Finally, we discuss potential improvements of the numerical methods aimed to increase their efficiency, and possible applications to the investigation of dissipative solitons that arise in nonlinear optical systems of contemporary interest. Overall, the method offers a promising alternative for solving a wide range of evolutionary partial differential equations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
AFFINE OPERATOR SPLITTING  
dc.subject
PSEUDO SPECTRAL METHOD  
dc.subject
FRACTIONAL NONLINEAR SCHROEDINGER EQUATION  
dc.subject
FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-07T13:31:46Z  
dc.journal.volume
466  
dc.journal.pagination
1-21; 128428  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Raviola, Lisandro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina  
dc.description.fil
Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina  
dc.journal.title
Applied Mathematics and Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300323005970?via%3Dihub  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.amc.2023.128428