Mostrar el registro sencillo del ítem
dc.contributor.author
Raviola, Lisandro
dc.contributor.author
de Leo, Mariano Fernando
dc.date.available
2023-12-22T16:40:23Z
dc.date.issued
2024-04-01
dc.identifier.citation
Raviola, Lisandro ; de Leo, Mariano Fernando; Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations; Elsevier Science Inc.; Applied Mathematics and Computation; 466; 1-4-2024; 1-21; 128428
dc.identifier.issn
0096-3003
dc.identifier.uri
http://hdl.handle.net/11336/221272
dc.description.abstract
We evaluate the performance of novel numerical methods for solving one-dimensional nonlinear fractional dispersive and dissipative evolution equations. The methods are based on affine combinations of time-splitting integrators and pseudo-spectral discretizations using Hermite and Fourier expansions. We show the effectiveness of the proposed methods by numerically computing the dynamics of soliton solutions of the the standard and fractional variants of the nonlinear Schrödinger equation (NLSE) and the complex Ginzburg-Landau equation (CGLE), and by comparing the results with those obtained by standard splitting integrators. An exhaustive numerical investigation shows that the new technique is competitive when compared to traditional composition-splitting schemes for the case of Hamiltonian problems both in terms accuracy and computational cost. Moreover, it is applicable straightforwardly to irreversible models, outperforming high-order symplectic integrators which could become unstable due to their need of negative time steps. Finally, we discuss potential improvements of the numerical methods aimed to increase their efficiency, and possible applications to the investigation of dissipative solitons that arise in nonlinear optical systems of contemporary interest. Overall, the method offers a promising alternative for solving a wide range of evolutionary partial differential equations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AFFINE OPERATOR SPLITTING
dc.subject
PSEUDO SPECTRAL METHOD
dc.subject
FRACTIONAL NONLINEAR SCHROEDINGER EQUATION
dc.subject
FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-12-07T13:31:46Z
dc.journal.volume
466
dc.journal.pagination
1-21; 128428
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Raviola, Lisandro. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina
dc.description.fil
Fil: de Leo, Mariano Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.journal.title
Applied Mathematics and Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300323005970?via%3Dihub
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.amc.2023.128428
Archivos asociados