Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations

Raviola, Lisandro; de Leo, Mariano FernandoIcon
Fecha de publicación: 01/04/2024
Editorial: Elsevier Science Inc.
Revista: Applied Mathematics and Computation
ISSN: 0096-3003
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

We evaluate the performance of novel numerical methods for solving one-dimensional nonlinear fractional dispersive and dissipative evolution equations. The methods are based on affine combinations of time-splitting integrators and pseudo-spectral discretizations using Hermite and Fourier expansions. We show the effectiveness of the proposed methods by numerically computing the dynamics of soliton solutions of the the standard and fractional variants of the nonlinear Schrödinger equation (NLSE) and the complex Ginzburg-Landau equation (CGLE), and by comparing the results with those obtained by standard splitting integrators. An exhaustive numerical investigation shows that the new technique is competitive when compared to traditional composition-splitting schemes for the case of Hamiltonian problems both in terms accuracy and computational cost. Moreover, it is applicable straightforwardly to irreversible models, outperforming high-order symplectic integrators which could become unstable due to their need of negative time steps. Finally, we discuss potential improvements of the numerical methods aimed to increase their efficiency, and possible applications to the investigation of dissipative solitons that arise in nonlinear optical systems of contemporary interest. Overall, the method offers a promising alternative for solving a wide range of evolutionary partial differential equations.
Palabras clave: AFFINE OPERATOR SPLITTING , PSEUDO SPECTRAL METHOD , FRACTIONAL NONLINEAR SCHROEDINGER EQUATION , FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.356Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/221272
URL: https://www.sciencedirect.com/science/article/pii/S0096300323005970?via%3Dihub
DOI: http://dx.doi.org/10.1016/j.amc.2023.128428
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Raviola, Lisandro ; de Leo, Mariano Fernando; Performance of affine-splitting pseudo-spectral methods for fractional complex Ginzburg-Landau equations; Elsevier Science Inc.; Applied Mathematics and Computation; 466; 1-4-2024; 1-21; 128428
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES