Mostrar el registro sencillo del ítem

dc.contributor.author
Rozán, Eric Alejandro  
dc.contributor.author
Bouzat, Sebastian  
dc.contributor.author
Kuperman, Marcelo Nestor  
dc.date.available
2023-12-22T13:18:27Z  
dc.date.issued
2023-10  
dc.identifier.citation
Rozán, Eric Alejandro; Bouzat, Sebastian; Kuperman, Marcelo Nestor; Testing lockdown measures in epidemic outbreaks through mean-field models considering the social structure; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 632; 10-2023; 1-15  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/221243  
dc.description.abstract
Lately, concepts such as lockdown, quarantine, and social distancing have become very relevant since they have been associated with essential measures in the prevention and mitigation of COVID-19. While some conclusions about the effectiveness of these measures could be drawn from field observations, many mathematical models aimed to provide some clues. However, the reliability of these models is questioned, especially if the social structure is not included in them. In this work, we propose a mesoscopic model that allows the evaluation of the effect of measures such as social distancing and lockdown when the social topology is taken into account. The model is able to predict successive waves of infections without the need to account for reinfections, and it can qualitatively reproduce the wave patterns observed across many countries during the COVID-19 pandemic. Subsequent waves can have a higher peak of infections if the restrictiveness of the lockdown is above a certain threshold. The model is flexible and can implement various social distancing strategies by adjusting the restrictiveness and the duration of lockdown measures or specifying whether they occur once or repeatedly. It also includes the option to consider essential workers that do not isolate during a lockdown.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
COVID-19  
dc.subject
LOCKDOWN AND SOCIAL DISTANCING MODELING  
dc.subject
MATHEMATICAL EPIDEMIOLOGY  
dc.subject
SECOND WAVE  
dc.subject
SOCIAL NETWORK DYNAMICS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Testing lockdown measures in epidemic outbreaks through mean-field models considering the social structure  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-12-22T11:30:11Z  
dc.journal.volume
632  
dc.journal.pagination
1-15  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rozán, Eric Alejandro. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Bouzat, Sebastian. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.description.fil
Fil: Kuperman, Marcelo Nestor. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0378437123008853  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2023.129330