Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Testing lockdown measures in epidemic outbreaks through mean-field models considering the social structure

Rozán, Eric AlejandroIcon ; Bouzat, SebastianIcon ; Kuperman, Marcelo NestorIcon
Fecha de publicación: 10/2023
Editorial: Elsevier Science
Revista: Physica A: Statistical Mechanics and its Applications
ISSN: 0378-4371
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Lately, concepts such as lockdown, quarantine, and social distancing have become very relevant since they have been associated with essential measures in the prevention and mitigation of COVID-19. While some conclusions about the effectiveness of these measures could be drawn from field observations, many mathematical models aimed to provide some clues. However, the reliability of these models is questioned, especially if the social structure is not included in them. In this work, we propose a mesoscopic model that allows the evaluation of the effect of measures such as social distancing and lockdown when the social topology is taken into account. The model is able to predict successive waves of infections without the need to account for reinfections, and it can qualitatively reproduce the wave patterns observed across many countries during the COVID-19 pandemic. Subsequent waves can have a higher peak of infections if the restrictiveness of the lockdown is above a certain threshold. The model is flexible and can implement various social distancing strategies by adjusting the restrictiveness and the duration of lockdown measures or specifying whether they occur once or repeatedly. It also includes the option to consider essential workers that do not isolate during a lockdown.
Palabras clave: COVID-19 , LOCKDOWN AND SOCIAL DISTANCING MODELING , MATHEMATICAL EPIDEMIOLOGY , SECOND WAVE , SOCIAL NETWORK DYNAMICS
Ver el registro completo
 
Archivos asociados
Tamaño: 4.748Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/221243
URL: https://linkinghub.elsevier.com/retrieve/pii/S0378437123008853
DOI: http://dx.doi.org/10.1016/j.physa.2023.129330
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Rozán, Eric Alejandro; Bouzat, Sebastian; Kuperman, Marcelo Nestor; Testing lockdown measures in epidemic outbreaks through mean-field models considering the social structure; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 632; 10-2023; 1-15
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES