Artículo
Entropy evolution at generic power-law edge of chaos
Fecha de publicación:
09/2023
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Chaos, Solitons And Fractals
ISSN:
0960-0779
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For strongly chaotic classical systems, a basic statistical–mechanical connection is provided by the averaged Pesin-like identity (the production rate of the Boltzmann–Gibbs entropy SBG=−∑i=1Wpilnpi equals the sum of the positive Lyapunov exponents). In contrast, at a generic edge of chaos (vanishing maximal Lyapunov exponent) we have a subexponential divergence with time of initially close orbits. This typically occurs in complex natural, artificial and social systems and, for a wide class of them, the appropriate entropy is the nonadditive one Sqe=[Formula presented](S1=SBG) with qe≤1. For such weakly chaotic systems, power-law divergences emerge involving a set of microscopic indices {qk}’s and the associated generalized Lyapunov coefficients. We establish the connection between these quantities and (qe,Kqe), where Kqe is the Sqe entropy production rate.
Palabras clave:
ENTROPY EVOLUTION
,
NON-ADDITIVE ENTROPIES
,
WEAK CHAOS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Tsallis, Constantino; Borges, Ernesto P.; Plastino, Ángel Ricardo; Entropy evolution at generic power-law edge of chaos; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 174; 9-2023; 1-5
Compartir
Altmétricas